
Tutorial 8

Editor – Brackets

Goals

Introduction to PHP and MySql.

- Set up and configuration of Xampp

- Learning Data flow

Things to note: Each week Xampp will need to be installed. Xampp is Windows software, similar

software is available for Mac, called Mamp.

Installing and configuring Xampp
Go to the website: https://www.apachefriends.org/index.html

Download the Xampp with PHP 7.1, click on the following link

Then click on

Download to the desktop, Once there, double click on the file and following the prompts

https://www.apachefriends.org/index.html

Click Next

Click Next

Click Next

NB: This is the installation folder, all of your web pages will belong in c:\xampp\htdocs

Untick Bitnami and click Next

Click next to install

Allow any pop ups such as Apache or MySql

Then click finish

Now we configure Xampp.

Assuming you left the “Do you want to start the Control Panel” ticked, you should see the following

on your screen.

Click on Save

The following should appear:

From here we need to click Start on Apache and MySql.

You should see the following.

We now have the Apache webserver up and running with MySql.

To check that it is working load up a browser and type localhost into the address bar.

You should see the following:

Now, this is all configuration information from Xampp, what we should do is clean out the folder

htdocs, to put our own files. To do this, we will use brackets to clean out the folder.

Load up brackets

From here, go to open folder

Navigate to c:\xampp\htdocs

Click Select

This should give you the following set of files in the navigation pane of brackets:

Highlight and right click on the navigation elements and delete everything in the folder

Once you have emptied the folder it should look like

Now, we check to ensure that the system is clean, go to your browser and navigate to

http://localhost/ You should see the following

Now we have a clean server to start creating with.

http://localhost/

Creating your php Website
From here, right click and create a new file called index.php and put in the following content:

As you can see, our php file looks exactly like a html file. Basically, a php file is a html file with server

capabilities built in. The extension tells the web server that the php service needs to examine and do

something extra before supplying the end user with the page.

Now let’s test the page, we should see nothing on the page.

Test using the server; go to localhost (Using Edge)

Test by using a browser (Chrome with the file being dragged onto the browser).

Now we will add some content to the page so you can see php in action.

Brackets

Test in Edge (localhost)

Test in Chrome (dragged as a local file)

As can be seen, chrome will not display anything, whereas using localhost activates the php so the

sentence can be shown in the browser.

Now we will add a function to php

Test in Edge (localhost)

Test in Chrome (File dragged into browser)

As you can see, the file being used locally is no longer able to understand what is occurring, and

henceforth just starts writing the php code to the screen. Therefore, a server must be used when

dealing with php.

From here on out, we will deal with the localhost and server, so testing is to be done in a browser

accessing localhost.

PHP Variables

Now we can add some more code with variables

Now we test, and it should produce the following

Next, we will run some information through variables and start to look at how information can be

transferred between pages.

Collecting information from the end user is normally done through the use of forms, so we will

create a form on the page and follow the data.

Create the following pages

Index.php

Collection.php

Test the page, using localhost

Live Index page

Live Collection page

As you can see we have passed the information over from one page to another, there are multiple

ways of transferring this data, in this case we used POST. We will quickly re-write the index page to

use GET and you can see the result. Note, we are only changing index.php not collection.php, this is

to show an issue that can occur if you don’t make modifications all the way through a site.

Index page

NB: Only change is method from post to get.

Collection page

Live index page

Live collection page

The error message that is appearing is informing you that the variables (username, pwd and pwd2)

do not exist, this is because the variables are being created and having information put into them at

the same time. Because this page doesn’t have any POST data, the variables cannot be created. If we

used $_GET instead of $_POST, the page would work fine.

Also, note that the get method has written the information into the address bar.

Post and Get are useful for transferring information from one page to another, but not quite so good

for carrying that same information to a third or additional pages. To achieve this, we can use what is

called Session variables.

We’ll create a function that shows the memory that’s being used, this function will be on the

collection page. So we’ll change the method back to post on the index page. See below to see what

needs to be done.

Index.php (Change method from GET to POST)

Collection.php

Live index.php

Live collection.php

As you can see, the information has been passed through. The new function is showing the current

details in memory.

Now we will add sessions and an additional page.

Index page

Collection page

Check page

Live index.php

Live collection.php

Live check.php

Notice how the third page, check.php, contains nothing in memory. What we will do is generate a

session id on the index page and modify collection.php to store the username and password in

sessions as well. This will showcase how persistent session memory is.

Index.php

Collection.php

Live index.php

Live collection.php

Live check.php

As you can see, the POST data doesn’t survive to the third page, whereas the session information is

still accessible.

Notice we have duplicated the function showMem(), this is bad coding form as we are wasting

memory. To tidy this up, we will create a new page called functions.php in which we will store the

function showMem() and link to the two pages. Think of this like creating an external stylesheet, one

page referenced by multiple pages to locate a working piece of code.

So, let’s create the following structure and pages.

Index.php

- Same as before, no need to change

Collection.php

Check.php

Functions.php

Test the pages

Live Index.php

Live Collection.php

Live Check.php

If you notice, the session id is different, this is because during writing of this, I closed the browser,

each time the browser is opened and goes to localhost, a new session id is generated.

Notice how cleaner the code is when the functions are stored separately.

So, now that we can transfer information from one page to another and have data stay persistent

throughout the site, how do we use it? Normally we use this information to allow the end user to

make choices as to what they see. As you have tested the page you will have seen that the data

being supplied for password has been different, what we will do now, is to make information appear

to the end user based on that information. So if the passwords match then we will congratulate

them, if they do not match, we will tell them to try again.

We are not using check.php so that can stay the same.

Make the following changes

Index.php

- Same as before, no need to change

Collection.php

Functions.php

Check.php

- Same as before, no need to change

Live index.php

Enter Username:derf; password:derf; password2: derf or derf2

Live collection.php (both passwords match)

Live collection.php (passwords do not match)

PHP as a templating Language

PHP has the ability to allow you to create templates for a website, we will now create and template

some new pages.

The design will be

To start with let’s move all of the current files into a folder so we can keep them for later. Create the

following files:

- Index.php

- Stylesheet.css

- Functions.php

Now that we have the basic file structure, go online, grab a couple of pictures (your choice, at least 2

and prep some lorim ipsum for the text side of the page) let’s code up the design.

Stage 1 – Everything is built on the one page

Index.php

This will give you:

Now that we have the general layout and design of the page completed, it’s time to move elements

to their separate sections, ie styles move into the stylesheet.css and are linked up that way;

background colours are removed and content gets put into place.

So, let’s move the styles and remove the background colours, 2 stages.

Stage 1

Index.php

Stylesheet.css

Result

Stage 2 – removing of background colours

Stylesheet.css

NB: nav has increased width and removed the width command, yet kept the min-width command in

addition to removing the colours.

Result

Now, we add content to the various locations of the page, with additional styles as needed.

Index.php

Result

Notice that the navigation links point to pages that don’t exist and are inside a folder. The images

are linked to images that were stored inside an images folder.

So far, there is nothing that has required us to use php. Now we will start to turn aspects of this into

a simple template that we can use on the addition pages.

The first change will be pulling out the header. And storing it as php functions; this is a dual function

as we will be able to get the pages to dynamically write the navigation. We will also move the

additional styles into the stylesheet.css.

Index.php

Stylesheet.css

Functions.php

Result

Always remember to test the pages after each modification, this will allow for debugging to occur

easier and quicker.

Next we modify the index page footer code, we extract that to the functions page and replace the

code.

Functions.php

Index.php

Result

Now that this has all been done, we’ve got the basis for our site template. So, create the folder

pages and then create about.php in that folder.

Folder layout

About.php

Now save and test, you should be able to navigate from the index page to the about page with no

problems at all

Live index.php

Live about.php

The only real issue is the header details, so, let’s fix that up with some php code.

Functions.php

About.php

Live index.php

Live about.php

Now that we have the header being written up by code, we can quickly make the other pages. By

doing a filesave as on the about.php and then changing the content of $page on every page.

Gallery.php

Shop.php

Contact.php

Once all of the pages have been saved, you can test them in a browser via localhost. The navigation

and headers should all change and work as expected.

Like all webpages, the structure has now been completed and each page is primarily different due to

the content on that page. Based off the structure we have just completed, all of the differences can

be done via the modification of elements that are situated with in the main div tag.

Backup

This concludes tutorial. Save your work (c:\xampp\htdocs) to USB, student drive, Onedrive, Dropbox

or zip and email the folder to yourself.

