Tutorial 7

Editor — Brackets

Goals

Create a website showcasing the following techniques

- Animated backgrounds
- Animated game elements
- 3 pages with differing game elements

Website

- Create a folder on the desktop called tutorial 7

Tutorial 7
(@]

- Open Brackets
- Create the following structure and index.html file

tutorial 7

images

batman-chibi.png

left.png
left2.png
left3.png
right.png
stand.png

index. html

Download the resources: http://www.amgelshadowx.com/adv/Tutorial%207.zip

Extract the images and place in an images folder.

Notice that the script is now below the body, this is so the elements required for the scripting are
loaded into memory just before the scripts are loaded.

http://www.amgelshadowx.com/adv/Tutorial%207.zip

Timer Page
Let’s start with the canvas and the styles required for the page.

Body Code

<body>
<p>This is creating a timer, one which counts up and one that counts down.</p>
<h3>NB. That when the timer counting down kicks in, the batman images go up the screen</h3>
<canvas id="myCanvas" width="900" height="600" class="silver"></canvas>
<p onclick="start()">Click to start</p>
</body>

Style

<style type="text/css'">

p {cursor: pointer;
</style>

ki

Result

This is creating a timer. one which counts up and one that counts down

NB. That when the timer counting down Kicks in, the batman images go up the screen

Click to start

From here, we start adding in variables to hold the batman image and an array for calculating
random starting positions.

<script>
var canObj = document.getElementById("myCanvas™):
var ctx = canObj.getContext('2d');
var gameWidth = canObj.width;
var gameHeight = canObj.height;
var cUp = 1;
var cDown = 903
var tick = 03

//Batman Chibi
var batman = new Image();
batman.src = "images/batman-chibi.png";

// array of differing positions
var maxArray = 4; // Arrays start at 0, so 4 is actually 5 images.
positionX = new Array();
positionY = new Array():
for (x=0j;x<=maxArrayj;x++)
positionX[x] = Math.random()*800;
for (x=0j;x<=maxArray;x++)
positionY[x] = Math.random()*100;

//console.log("ctx: ",ctx);

//console.log("canObj: ",can0Obj);

var fps = 603

window.requestAnimFrame = (function(){

return window.requestAnimationFrame |
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame |
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame |l
function(callback){
window.setTimeout(callback, 1000 / fps):

}s

HO;

<fscript>

Saving and testing this should result in no errors being present on the screen. Next we need to start
adding the functions that will be used to move the chibi batmans up and down the screen. The first
function we call is start().

Function start()

51 function start()

52 {

53 tick = setTimeout(timeCount(tick),1000);
54 console.log(tick);

55 if(tick <= 1000)

56 {

57 gamelLoopDrop()

58 }

59 if ((tick >1000) && (tick <2000))
60 {

61 gamelLoopUp();

62 1

63 }

64

65

This function is designed to count and, depending on what value the variable tick has, it will call the
drop loop or the up loop. Each of those particular loops will move the batman image up or down.

Let’s write these up

Function gameLoopDrop()

function gamelLoopDrop()

{

setTimeout (function()

{
requestAnimFrame(start);
clearScreen();
dropBatman() ;//multiple batman
cUp = tick;
drawText(cUp,10,20,"white");

},1000/fps);

cDown = cUp;

Function gamelLoopUp()

function gamelLoopUp()

{

setTimeout(function()

{

},1000/fps);

requestAnimFrame(start);
clearScreen();
riseBatman();//multiple batman
cDown -1;
drawText(cDown,850,20,"gold");

cDown =

As you can see each loop is designed to clear the screen and position the batman image. Now we
need to add the remaining functions and test it. These functions are

Function timeCount()

function timeCount(tick)

{

}

//console.log("Here");

Function dropBatman()

{

function dropBatman()

for (x=0j;x<=maxArrayjx++)

{

//console.log(positionX[x],positionY[x]);
drawBatman(positionX[x],positionY[x]);
positionY[x] = positionY[x]+ 1;

if (positionY[x]

{

positionY[x]
positionX[x]

>

gameHeight)

(Math.random()*200) % -1; // new Starting Y
(Math.random()*850); // New X position

Function riseBatman()

function riseBatman()
{
for (x=0j;x<=maxArrayjx++)
{
//console.log(positionX[x],positionY[x]);
drawBatman(positionX[x],positionY[x]);
positionY[x] = positionY[x]- 1}
if (positionY[x] > gameHeight)
{
positionY[x] = (Math.random()*200) = -1; // new Starting Y
positionX[x] (Math.random()*850); // New X position

}

Function drawBatman()

function drawBatman(x,y)

{

ctx.drawImage (batman,x,y);

}

Function clearScreen()

function clearScreen()

{
ctx.clearRect(0,0,gameWidth,gameHeight) ;

Function drawText()

//Draw Text function
function drawText(text,x,y,fontColour)
{
var ctx = document.getElementById("myCanvas").getContext('2d'):
ctx.fillStyle = fontColour;
ctx.font = "20px Arial";
ctx. fillText(text,x,y):

Result — batman going down — NB White counter

Thus 1s creating a timer, one which counts up and one that counts down.

NB. That when the timer counting down Kicks in, the batman images go up the screen

Click to start

Result — batman going up — NB gold counter

This 1s creating a timer, one which counts up and one that counts down.

NB. That when the timer counting down Kicks in, the batman images go up the screen

Click to start

Mouse Move
This page will show you how to track an image and restrain it within the canvas.

Start a new page. Let’s start with the canvas and the styles required for the page.

Body Code

<body>
<p>The image will stick to the mouse cursor and be restrained to the canvas</p>
<canvas id="myCanvas" width="900" height="600" class="silver" onmousemove="playerPos(event)'"></canvas>
<p onclick="start()">Click to start</p>

</body>

Style

<style type="text/css'">
.silver {background-color:#333333;}
p {cursor: pointer;j}
</style>

Result

This 1s creating a timer. one which counts up and one that counts down.

NB. That when the timer counting down Kicks in, the batman images go up the screen

Click to start

Now we add the starting global variables required for the program.

e

<script>

var canObj = document.getElementById("myCanvas'");

var ctx = canObj.getContext('2d'):
var gameWidth = canObj.width;

var gameHeight = canObj.height;
var posx = 400;

var posy = 400;

//Batman Chibi
var batman = new Image();
batman.src = "images/batman-chibi.png";

var fps = 60;
window.requestAnimFrame = (function(){
return window.requestAnimationFrame

window.webkitRequestAnimationFrame

window.mozRequestAnimationFrame
window.msRequestAnimationFrame
window.oRequestAnimationFrame
function(callback){

window.setTimeout(callback, 1000 / fps);

}s
NO;

</script>

Next we start to add the functions required to make it work.

Function start()

function start()

{
gamelLoop();

Function gameloop

function gameloop()

{

setTimeout(function()

{
requestAnimFrame(start);
clearScreen();
drawBatman(posx,posy);//multiple batman
drawText('X Pos',10,15,"white");
drawText('Y Pos',60,15,"white");
drawText(posx,10,35,"white')
drawText(posy,60,35,"white'")

},1000/fps);

}

Function playerPos()

function playerPos(event)
{
x = event.clientX;
y = event.clientY;
var winOffsetX = canObj.offsetlLeft - canObj.scrollLeft;
var winOffsetY = canObj.offsetTop - canObj.scrollTop;
var bw = 100/2;
var bh = 50/2;
// console.log(bw,bh):
posx = x - winOffsetX - bw;
posy y — winOffsetY - bh;

}

Function drawBatman()

function drawBatman(x,y)

{
//restraining batman in the canvas
y restrainCanvasHeight(y);
X restrainCanvasWidth(x);
ctx.drawImage(batman,x,y);

Function clearScreen()

function clearScreen()

{
ctx.clearRect(0,0,gameWidth,gameHeight) ;

}

Function restrainCanvasHeight()

function restrainCanvasHeight(y)

{
if (y> (gameHeight-50)) //ground
{
y = gameHeight-50;
}
if (y<=0) // ceiling
{
y = 03
}
return y;
}

Function restrainCanvasWidth()

function restrainCanvasWidth(x)

{
if(x<=0) //left side
{
X = 03
}
if(x>= (gameWidth-100)) //right side
{
Xx= gameWidth-100;
}
return x;

¥

Function drawText()

function drawText(text,x,y,fontColour)

{
var ctx = document.getElementById("myCanvas').getContext('2d');
ctx.fillStyle = fontColour;
ctx.font = "14px Arial";
ctx.fillText(text,x,y);
¥
Result

The image will stick to the mouse cursor and be restrained to the canvas

X Pos Y Pos
213 282

Click to start

Character direction with changing sprites

This page will draw a chibi character that will change the direction it faces depending on where the
mouse is. There is also ‘gravity’ pulling the character down but, with a left click the character jumps

up/
Start a new page. Let’s start with the canvas and the styles required for the page.

Body Code

<body>
<p>
Changes sprite chibi around the canvas with the mouse,
"jumps" the chibi when left click occurs

</p>
<canvas id="myCanvas" width="900" height="600" class="silver" onmousemove="mousePo
<p onclick="start()">Click to start</p>

</body>

Style

<style type="text/css'">
.silver {background-color:#333333;}
p {cursor: pointer;j}
</style>

Result

Changes sprite chibi around the canvas with the mouse. "jumps” the chibi when left click occurs

s(event)"></canvas>

Click to start

Now we add the starting global variables required for the program.

19 <script>

20 var canObj = document.getElementById("myCanvas™);
21 var ctx = canObj.getContext('2d'):

22 var gameWidth = canObj.width;

23 var gameHeight = canObj.height;

24 var posx = 400;

25 wvar posy = 400;

26 var mousex = 0;

27 wvar mousey = 0;

28

29 //Examines the canvas for a click, then moves the chibi
30 //up by 50. NB There are no constraints, the chibi will
31 /[/leave the canvas.

32

33 var box = document.getElementById('myCanvas');
34 box.addEventListener('click', function(e) {
35 posy = posy - 50;

36 1);

37

38

39

40 //Chibi

41 var chibi new Image();

42 chibi.src = "images/stand.png";

43 var chibi_left = new Image();

44 chibi_left.src = "images/left.png";

45 var chibi_right = new Image();

46 chibi_right.src = "images/right.png";

47

48 chibi_speed = 3;

49

50 wvar fps = 60;

51 ¥ window.requestAnimFrame = (function(){

52 return window.requestAnimationFrame |]

53 window.webkitRequestAnimationFrame ||

54 window.mozRequestAnimationFrame |]

55 window.msRequestAnimationFrame ||

56 window.oRequestAnimationFrame | |

57 function(callback){

58 window.setTimeout(callback, 1000 / fps);
59 s

60 103

—

Now that we have the global vars in place, we need to add the following functions

Function start()

63 function start()

647V {
65 gamelLoop();
66 }

Function gameloop()

67 function gameloop()

68 v {

69 setTimeout (function()

70 {

71 requestAnimFrame(start);
72 clearScreen():

73 drawChibi ()

74 gravity():

75 },1000/fps);

76 }

Function gravity()

78 function gravity()

797 {

80 if(posy !=500)

81 {

82 if (posy<=500)
83 { posy++}
84 }

85 else

86 {posy=500;}

87 // console.log(posy):;
88

89 }

Function mousePos()

90 function mousePos(event)

91 VY {

92 x = event.clientX;

93 y = event.clientY;

94 var winOffsetX = canObj.offsetlLeft - canObj.scrollLeft;
95 var winOffsetY = canObj.offsetTop - canObj.scrollTop;
96 mousex = X - winOffsetX - 33;

97 mousey = y - winOffsetY - 33;

98 }

Function drawChibi()

100 function drawChibi()

101 VY {

102 if (mousex < (posx-33))

103 ¥ {

104 ctx.drawImage(chibi_left,posx,posy);
105 posx = posx-chibi_speed;

106 }

107 else if (mousex > (posx+33))

108 Y {

109 ctx.drawImage(chibi_right,posx,posy);
110 posx = posx + chibi_speed;

111 }

112 else

113Y {

114 ctx.drawImage(chibi,posx,posy);

115 }

116 }

Function clearScreen()

117 function clearScreen()

118 v {

119 ctx.clearRect(0,0,gameWidth, gameHeight)
120 }

Result

Changes sprite chibi around the canvas with the mouse. "jumps” the chibi when left click occurs

Click to start

Changes sprite chibi around the canvas with the mouse. "jumps” the chibi when left click occurs

m to start

Changes sprite chibi around the canvas with the mouse. "jumps" the chibi when left click oceurs

Click to start

Backup

This concludes tutorial. Save your work to USB, student drive, Onedrive, Dropbox or zip and email
the folder to yourself.

