
Tutorial 4
Editor – Brackets

Goals

Create a website showcasing the following techniques

- Dealing with sound, making areas on an image produce sound

- Dealing with external helper files to get sound working within a canvas.

Website
- Create a folder on the desktop called tutorial 4

o
- Open Brackets

- Create the following structure and index.html file

-

Index Page
Open up index.html, we will be working on this to create the page.

Download the resource files from L@G. Put them in the appropriate folders and remove the

extraneous files. You should have the following setup.

Next, we load up the resources and load the image file of the drum kit, at the moment, the audio will

play upon the load of the page, but when we click on the drum image there is nothing there to

activate other sounds.

Use the following code

Div

Add the following css

Save and test the page, you should see the following

Now that we have the drum kit loaded, we will write some code to demonstrate onclick event.

Javascript

So, with the console open, test the page, you should be able to see the following

This is good in that we can now view what is occurring when we click, but what happens when we

shrink the window and test it, click in the corners of the image after you have refreshed the page

and shrunk the window.

You will see the following

In this case, the window was shrunk to the point that there is basically no white space around the

image at all. Notice how different the console has recorded the X value. This is because there is an

element to the page that is called offset. The offset is a variable that can contain differing values

based upon the difference between the object selected and the left edge of the screen. There is also

an offset from the top of the page to the object as well. Now, we need to add code to account for

this varying distance.

Javascript

To test this new code, re-center the page, and reload, then click in all 4 corners of the image. You

should see something similar to the following. Remember that the numbers will be different based

upon the screen resolution of the device this is being tested on.

Now that we have the ability to calculate the offset, we will split the image in two, this will then

allow us to click on either the left hand side or right hand side of the image to be able to load and

play the audio source.

Use the following code:

Save and test, you should be hearing differing sounds from each side of the image.

Next we need to split up the image from left and right sides, we are going to be changing the code to

ensure that there is precise areas on the image in which if you click, a differing sound is played due.

To start with, we need to determine the areas that need to be modified. So, let’s examine the image

we are working with.

Each section of the drumkit can be split up into boxes of which can then have the click area tracked.

This is a prime example of why the use of console.log and handle click is so important and useful for

implementing precision in programming.

First we determine the areas:

Each of the red boxes are going to be needed as a clickable area.

To start with, we need to add all the audio files as before, instead of loading 2 audio files we will put

in the code to load 8 audio files.

Div code

If you save and test, there is no change to the current page except that in the background, the

system knows of the new audio files. Next, we modify the clean up the handleclick function to use

as the tool to determine the size of each box on the image.

JavaScript

Once this is done, we save and load up the page. With the console open, we click the top left corner

and bottom right corner of each section on the drum, to give us the dimensions needed for that

specific area.

Console

Once we have this information, we can modify the Javascript to play the audio. This is done by using

a separate function and implementing some IF statements. So, the Cymbol on the left it’s top left

position is 65,33 and bottom right is 132,79. Using these numbers we can then calculate the box like

this:

From here we type up the following JavaScript

The /**/ are comments and in the playAudio function are bookmarks for where the code will go for

each element of the drum.

Notice the modification to the handleClick function. We are feeding the x and y co-ordinates into the

playAudio function. Once we have them there, we check to see if the clicks occur in the correct

logical box.

Now, we add the elements one at a time, with testing. This way, if there are any mistakes, we will

only have one area to look at.

Either fill in the X and Y co-ordinates yourself, or use the following

Test, each element on the drum kit, should make a different sound.

External Audio helper
Start a new page Called page2.html

Download the resources from here: https://1drv.ms/u/s!AskBHXkgcX44pek8iXTZfy7Q3O5ORA

Extract them into the tutorial 4 folder.

Notice the new files: cat-purr.mp3, puppy-bark.mp3, Rattlesnake.mp3, cat.jpg, puppy.jpg and

rattlesnake.jpg

These are the files we will be manipulating.

https://1drv.ms/u/s!AskBHXkgcX44pek8iXTZfy7Q3O5ORA

To start with, we will create a canvas and style it.

Div

Css

Result

Now, we are going to add the three images, these images will respond to the click event eventually,

but for now, we’ll get them to load into the page. Each will have a separate function for drawing and

there will be an additional function to load each of the draw functions.

Even with the JavaScript written, there will need to be a small modification to the div code. This will

be the onload function. This function will be called on the body tag, so when the page is loading up,

it knows that it needs to run the draw functions as well.

Javascript

Div

Result

Now that the resources have been loaded, we need to connect to the external audio helper. We

are going to be using the createJS sounds library to help this happen.

http://www.createjs.com/#!/SoundJS

This linking is done via a script call, do this above the current set of scripts

This code access the js library stored on createjs website. A handy way to access libraries if you don’t

want to download them. Now, we want to load up our audio files. We need them to be ready for

playing as soon as the images are loaded, so from here we’ll make a few JavaScript changes and a

HTML change

We also need to assign some global variables to identify the sounds.

http://www.createjs.com/#!/SoundJS

These variables allow us to manipulate within any function, as they are created outside of a function

they are classified as global variables.

Next, we need to create a function to load the audio files.

Now that we have a function that does this, we can add it to the loadResources function

Save all files and test the page, it should load with no errors. If there are any errors, check for typos

in your code.

Everything is currently in position for loading the audio except for the actual clicking itself. Next we

need to add the click ability, so we now write the handleclick function

If you save and test it, you should get an error on the activateAudio() function not existing but there

will be numbers indicating x and y positioning.

Now, as we add the functions activateAudio() and playSound() these functions will allow us to make

the audio play, and by being structured enough, easier to understand.

Once completed, save and test. Notice how we can play multiple audio streams at once.

Backup

This concludes tutorial. Save your work to USB, student drive, Onedrive, Dropbox or zip and email

the folder to yourself.

