Tutorial 4

Editor — Brackets
Goals
Create a website showcasing the following techniques

- Dealing with sound, making areas on an image produce sound
- Dealing with external helper files to get sound working within a canvas.

Website
- Create a folder on the desktop called tutorial 4

« Tutorial 4

o)
- Open Brackets

- Create the following structure and index.html file

Working Files 1 <!DOCTYPE html>
2 ¥V <html>
index.html 3 <head>
4 <title></title>
5 <style type="text/css">
Tutorial 4 o </style>
7 <script>
i 8 </script>
9 </head>
images 10 <body>
11 </body>

index.html

12 </html>|

Index Page
Open up index.html, we will be working on this to create the page.

Download the resource files from L@G. Put them in the appropriate folders and remove the
extraneous files. You should have the following setup.

Tutorial 4

audio
bass drum.wav
claves.wav
cow bell.wav
CYCdh_ElecK01-Kick02.mp3
CYCdh_K4-Snr05.mp3
CymbalCrash-03.mp3

hand clap.wav

hihat.wav

snare drum.wav

synthe drum.wav
images

closecross.png

DrumKit.png

index.html

Next, we load up the resources and load the image file of the drum kit, at the moment, the audio will
play upon the load of the page, but when we click on the drum image there is nothing there to
activate other sounds.

Use the following code
Div

<body>
<audio id="Bassdrum" autoplay="false" defaultMuted="true" src="audio/bass%20drum.wav" ></audio>
<audio id="Snare" autoplay-"false" defaultMuted="true" src="audio/snare%20drum.wav" ></audio>
<p></p>
<p>Click on Drums to Play </p>
</bpdy>

Add the following css

<style type="text/css">
.drumSize{width: 400px; height: 250px; display: block; margin: © auto;}
p{text-align: center;}

</style>

Save and test the page, you should see the following

il
N

O * 80 -

Click on Drums to Play

Now that we have the drum kit loaded, we will write some code to demonstrate onclick event.
Javascript

<script>
function handleClick(event)
{

// find out what was clicked

var windowClickX = event.clientX;

var windowClickY = event.clientY;

console.log('x: '",windowClickX,' y: ',windowClickY);

}

</script>

So, with the console open, test the page, you should be able to see the following

(W] [AaC][O!][® A
0 HTML1300: Navigation occurred.

index.html

Xe 219 yu 47

index.html (15,17)

X: 503 y: 213

index.html (15,17)

Xx: 507 y: 71

index.html (15,17)

X: 259 y: 202

index.html (15,17)

Click on Drums to Play

This is good in that we can now view what is occurring when we click, but what happens when we
shrink the window and test it, click in the corners of the image after you have refreshed the page
and shrunk the window.

You will see the following
| [W][A
@ H™ML1300: Navigation occurred.
index.html
X 22 ‘yr 30
index.html (15,17)
X: 350 y& 223
index.html (15,17)
X: 384 y: 37
index.html (15,17)
X: 26 y: 240
index.html (15,17)

Click on Drums to Play

In this case, the window was shrunk to the point that there is basically no white space around the
image at all. Notice how different the console has recorded the X value. This is because there is an
element to the page that is called offset. The offset is a variable that can contain differing values
based upon the difference between the object selected and the left edge of the screen. There is also
an offset from the top of the page to the object as well. Now, we need to add code to account for
this varying distance.

Javascript

<script>
function handleClick(event)
{
// find out what was clicked
var windowClickX = event.clientX;
var windowClickY = event.clientY;
console.log('No calculated offset:: x: ',windowClickX,' y: ',windowClicky);
var drum_im = document.getElementById("Drums');
var winOffsetX = drum_im.offsetleft - drum_im.scrolllLeft;
var winOffsetY = drum_im.offsetTop - drum_im.scrollTop;
var clickX = windowClickX-winOffsetX;
var clickY = windowClickY-winOffsetY;
console.log('Adjusted with offset:: x: ',clickX,' y: ',clickY);
}

</script>

To test this new code, re-center the page, and reload, then click in all 4 corners of the image. You
should see something similar to the following. Remember that the numbers will be different based
upon the screen resolution of the device this is being tested on.

N @°]|lA°||@] [® X

() HTML13@@: Navigation occurred.
index.html
No calculated offset:: x: 212 y: 4@
index.html (15,17)
Adjusted with offset:: x: 26 y: 24
index.html (21,17)
No calculated offset:: x: 201 y: 242
index.html (15,17)
Adjusted with offset:: x: 15 y: 226
index.html (21,17)
No calculated offset:: x: 550 y: 33
index.html (15,17)
Adjusted with offset:: x: 364 y: 17
index.html (21,17)
No calculated offset:: x: 558 y: 250
index.html (15,17)
Adjusted with offset:: x: 372 y: 234
index.html (21,17)

Click on Drums to Play

Now that we have the ability to calculate the offset, we will split the image in two, this will then
allow us to click on either the left hand side or right hand side of the image to be able to load and
play the audio source.

Use the following code:

ser rpus
function handleClick(event)
{
// find out what was clicked
var windowClickX = event.clientX;
var windowClickY = event.clientY;
console.log('No calculated offset:: x: ',windowClickX,' y: ',windowClickY);
var drum_im = document.getElementByTId("Drums');
var winOffsetX = drum_im.offsetleft - drum_im.scrolllLeft;
var winOffsetY = drum_im.offsetTop - drum_im.scrollTop;
var clickX = windowClickX-winOffsetX;
var clickY = windowCLlickY-winOffsetY;
console.log('Adjusted with offset:: x: ',clickX,' y: ',clickY);
// match that to a drum and call function to play its noise
if(clickX > 200)
{
document.getElementByTId("Snare").play();
}
else
{
document.getElementById("Bassdrum").play();
}
}

fecrint>

Save and test, you should be hearing differing sounds from each side of the image.

Next we need to split up the image from left and right sides, we are going to be changing the code to
ensure that there is precise areas on the image in which if you click, a differing sound is played due.

To start with, we need to determine the areas that need to be modified. So, let’s examine the image
we are working with.

Each section of the drumkit can be split up into boxes of which can then have the click area tracked.

This is a prime example of why the use of console.log and handle click is so important and useful for
implementing precision in programming.

First we determine the areas:

Each of the red boxes are going to be needed as a clickable area.

To start with, we need to add all the audio files as before, instead of loading 2 audio files we will put
in the code to load 8 audio files.

Div code

<body>
<audio
<audio
<audio
<audio
<audio
<audio
<audio
<audio
<audio

id="Bassdrum" autoplay="fTalse" defaultMuted="true" src="audio/bass%20drum.wav" ></audio>
id="Snare" autoplay="false" defaultMuted="true" src="audio/snare%20drum.wav" ></audio>
id="Claves" autoplay="false" defaultMuted="true" src="audio/claves.wav" ></audio>

id="Cow" autoplay="false" defaultMuted="true" src="audio/cowss20bell.wav" ></audio>

id="Kick" autoplay="false" defaultMuted="true" src="audio/CYCdh_ElecKel-Kicke2.mp3" ></audio>
id="Snr" autoplay="false" defaultMuted="true" src="audio/CYCdh_K4-Snre5.mp3" ></audio>
id="Crash" autoplay="false" defaultMuted="true" src="audio/CymbalCrash-03.mp3" ></audio>
id="Hihat" autoplay="false" defaultMuted="true" src="audio/hihat.wav" ></audio>

id="Synth" autoplay="false" defaultMuted="true" src="audio/synthe%2@drum.wav" ></audio>

<p></p>
<p>Click on Drums to Play </p4

</body>

If you save and test, there is no change to the current page except that in the background, the
system knows of the new audio files. Next, we modify the clean up the handleclick function to use
as the tool to determine the size of each box on the image.

JavaScript

function handleClick(event)

{

var windowClickX = event.clientX;

var windowClickY = event.clientY;

var drum_im = document.getElementById("Drums");

var winOffsetX = drum_im.offsetlLeft - drum _im.scrollLeft;

var winOffsetY = drum_im.offsetTop - drum_im.scrollTop;

var clickX = windowClickX-winOffsetX;

var clickY = windowClickY-winOffsetY;

console.log('Adjusted with offset:: x: ',clickX,' y: ',clickY);

}

Once this is done, we save and load up the page. With the console open, we click the top left corner
and bottom right corner of each section on the drum, to give us the dimensions needed for that
specific area.

Console

index.html

Adjusted with offset:: x: 65 y: 33
index.html (19,17)

Adjusted with offset:: x: 132 y: 79
index.html (19,17)

Adjusted with offset:: x: 42 y: 122
index.html (19,17)

Adjusted with offset:: x: 88 y: 155
index.html (19,17)

Adjusted with offset:: x: 154 y: 66
index.html (19,17)

Adjusted with offset:: x: 199 y: 1@2
index.html (19,17)

Adjusted with offset:: x: 119 y: 148
index.html (19,17)

Adjusted with offset:: x: 165 y: 190

Once we have this information, we can modify the Javascript to play the audio. This is done by using
a separate function and implementing some IF statements. So, the Cymbol on the left it’s top left
position is 65,33 and bottom right is 132,79. Using these numbers we can then calculate the box like
this:

65,33 132

79 132,79

From here we type up the following JavaScript

function handleClick(event)

{
var windowClickX = event.clientX;
var windowCLlickY = event.clientY;
var drum_im = document.getElementById("Drums");
var winOffsetX = drum_im.offsetleft - drum_im.scrolllLeft;
var winOffsetY = drum_im.offsetTop - drum_im.scrollTop;
var clickX = windowClickX-winOffsetX;
var clickY = windowClickY-winOffsetY;
console.log('Adjusted with offset:: x: ',clickX,' y: ',clickY);
playAudio(clickX,clickY);
}
function playAudio(x,y)
{
/[«Crash*/
if ((x>= 65) && (x<=132))
{
if ((y>=33) && (y<=79))
{
document.getElementById("Crash").play();
}
}
/*Bass Drumx/
/* Snare */
/*Clavesx*
[/ *Cow*
J*Kickx/
/*Snr/
/*HiHatx/
/*Synthx/
H

The /**/ are comments and in the playAudio function are bookmarks for where the code will go for
each element of the drum.

Notice the modification to the handleClick function. We are feeding the x and y co-ordinates into the
playAudio function. Once we have them there, we check to see if the clicks occur in the correct
logical box.

Now, we add the elements one at a time, with testing. This way, if there are any mistakes, we will
only have one area to look at.

Either fill in the X and Y co-ordinates yourself, or use the following

function playAudio(x,y)
{
/*Crash=/
if ((x>= 65) && (x<=132))
{
if ((y>=33) && (y<=79))
{
document.getElementById("Crash").play();
}
}

/*Bass Drum=x/
if ((x>= 187) && (x<=237))

{
if ((y>=146) && (y<=199))
{
document.getElementById("Bassdrum").play();
}
t

/* Snare */
if ((x>= 187) && (x<=237))

{
if ((y>=146) && (y<=199))
{
document.getElementByld("Bassdrum") .play();
}
}
/*Clavesx/
if ((x>= 51) && (x<= 85))
{
if ((y>= 120) && (y<= 155))
{
document.getElementById("Claves").play();
}
}
/*Cowx /
if ((x>= 155) && (x<= 197))
{
if ((y>= 67) && (y<= 104))
{
document.getElementById("Cow").play();
}

¥

/*Kickx/
if ((x>=121) && (x<=171))
{
if ((y>=151) && (y<=193))
{
document.getElementById("Kick").play();
}
}
/*Snrx/
if ((x>= 226) && (x<=269))
{
if ((y>=74) && (y<=109))
{
document.getElementById("Snr'").play();
}
}
/*HiHat*/
if ((x>= 263) && (x<=336))
{
if ((y>=21) && (y<=64))
{
document.getElementById("Hihat").play();
}
}
/*Synthx*/
if ((x>= 258) && (x<=320))
{
if ((y>=137) && (y<=179))
{
document.getElementById("SynthP).play();
}
}

Test, each element on the drum kit, should make a different sound.

External Audio helper
Start a new page Called page2.html

Working Files 1 <!DOCTYPE html>
2 v <html>
index.html 3 <head>
page2.html - <title></title>
5 <style type="text/css'">
6 </style>
: 7 <script>
Tutorial 4 8 </script>
9 </head>
audio 10 <body>
11 </body>

IEEES
= 12 </html>

index.html

page2.html

Download the resources from here: https://1drv.ms/u/s!AskBHXkgcX44pek8iXTZfy7Q3050RA

Extract them into the tutorial 4 folder.

audio
bass drum.wav
cat-purr.MP3
claves.wav
cow bell.wav
CYCdh_ElecK01-Kick02.mp3
CYCdh_K4-Snr05.mp3
CymbalCrash-03.mp3
hand clap.wav
hihat.wav
puppy-bark.MP3
Rattlesnake.MP3

snare drum.wav

synthe drum.wav

images
cat.jpg
closecross.png
DrumKit.png
puppy-jpg
rattlesnake.jpg

Notice the new files: cat-purr.mp3, puppy-bark.mp3, Rattlesnake.mp3, cat.jpg, puppy.jpg and
rattlesnake.jpg

These are the files we will be manipulating.

https://1drv.ms/u/s!AskBHXkgcX44pek8iXTZfy7Q3O5ORA

To start with, we will create a canvas and style it.
Div

<body>
<canvas id= width= height= onclick= class= ></canvas>
</body>

Css
<style type: >
.colCanvas{background-color: aliceblue; border: 1px gray ; border-radius: 15px;}

</style>

Result

Now, we are going to add the three images, these images will respond to the click event eventually,
but for now, we’ll get them to load into the page. Each will have a separate function for drawing and
there will be an additional function to load each of the draw functions.

Even with the JavaScript written, there will need to be a small modification to the div code. This will
be the onload function. This function will be called on the body tag, so when the page is loading up,
it knows that it needs to run the draw functions as well.

Javascript

<script>
function drawCat()
{
var ctx = document.getElementById("myCanvas").getContext('2d');
var cat = new Image();
cat.src = "images/cat.jpg";
cat.onload = function()
{
ctx.drawImage(cat,500,20);
}
+
function drawPuppy ()
{
var ctx = document.getElementById("myCanvas").getContext('2d");
var puppy = new Image();
puppy.src = "images/puppy.jpg";
puppy.onload = function()
{
ctx.drawlmage (puppy,20,200);
¥
}
function drawSnake()
{
var ctx = document.getElementById("myCanvas").getContext('2d");
var snake = new Image();
snake.src = "images/rattlesnake.jpg";
snake.onload = function()
{
ctx.drawImage (snake,300,300);
}
1
function loadResources()
{
drawCat();
drawPuppy () ;
drawSnake();
1
</script>

Div

<body onload="1oadResources()">
<canvas id="myCanvas" width="1000" height="600" onclick="handleClick(event)" class="colCanvas"></canvas>
</body>

[N

Result

e ™\

Now that the resources have been loaded, we need to connect to the external audio helper. We
are going to be using the createlS sounds library to help this happen.

http://www.createjs.com/#!/SoundJS

This linking is done via a script call, do this above the current set of scripts

</style>
<script src="http://code.createjs.com/soundjs-0.6.2.min.js"></script>
<script>

function drawCat()

=

This code access the js library stored on createjs website. A handy way to access libraries if you don’t
want to download them. Now, we want to load up our audio files. We need them to be ready for
playing as soon as the images are loaded, so from here we’ll make a few JavaScript changes and a
HTML change

We also need to assign some global variables to identify the sounds.

<script>
var soundIDCat = "cat";
var soundIDPuppy = "puppy";
var soundIDSnake = "snake';

function drawCat()

http://www.createjs.com/#!/SoundJS

These variables allow us to manipulate within any function, as they are created outside of a function
they are classified as global variables.

Next, we need to create a function to load the audio files.

function loadSound()

{
createjs.Sound.registerSound("audio/cat-purr.mp3", soundIDCat);
createjs.Sound.registerSound("audio/puppy bark.mp3", soundIDPuppy);
createjs.Sound.registerSound("audio/Rattlesnake.mp3", soundIDSnake);
}

Now that we have a function that does this, we can add it to the loadResources function

function loadResources()

{
loadSound () ;
drawCat();
drawPuppy () ;
drawSnake () ;
}

elcrrints

Save all files and test the page, it should load with no errors. If there are any errors, check for typos
in your code.

Everything is currently in position for loading the audio except for the actual clicking itself. Next we
need to add the click ability, so we now write the handleclick function

function handleClick(e)
{
posX = e.clientX;
posY = e.clientY;
var mcObj = document.getElementById("myCanvas");
var winOffSetX = mcObj.offsetleft - mcObj.scrollleft; //calculate offset
var winOffSetY = mcObj.offsetTop — mcObj.scrollTop; //calculate offset
posX = posX - winOffSetX;
posY = posY - winOffSetY;
console.log(posX,' // ',posY);
activateAudio();

If you save and test it, you should get an error on the activateAudio() function not existing but there
will be numbers indicating x and y positioning.

I VESIH Console €32 Debugger Network Performance Memory Emulation Experiments

o SCRIPT7016: Use of XMLHttpRequest with the synchronous flag set to true is deprecated due to its impact on user-pe
soundjs-@.6.2.min.js (18,16828)
121 // 281
page2.html (69,4)

Now, as we add the functions activateAudio() and playSound() these functions will allow us to make
the audio play, and by being structured enough, easier to understand.

function activateAudio()

{
if((posX>=25) && (posX <= 215))

{
if ((posY>=203) && (posY <=431))
{
playSound('puppy');
¥

} // end puppy click
if ((posX>=505) && (posX <=695))

{
if ((posY>=23) && (posY <= 151))
{
playSound("cat");
}

}// end of cat click
if ((posX>=305) && (posX<=699))

' if ((posY>=307) && (posY <=595))
' playSound("snake");
}//eid of snake click
}

function playSound(animalName)

‘ if (animalName == 'puppy')
' createjs.Sound.play(soundIDPuppy) ;
if (animalName == 'cat')
{ createjs.Sound.play(soundIDCat) ;
if (animalName == 'snake')
' createjs.Sound.play(soundIDSnake) ;
}

}

Once completed, save and test. Notice how we can play multiple audio streams at once.

Backup

This concludes tutorial. Save your work to USB, student drive, Onedrive, Dropbox or zip and email
the folder to yourself.

