Game Design

Concept 1 Tutorial

Build a website that loads a single image and demonstrates the game loop.

On your desktop create a new folder called Game Design

-

- ~ 4~ m *» ThisPC > Desktop

Quick access
m Desktop
% Downloads
= Documents

i Game Design
= Pictures

In this folder create a new folder called conceptl

Clipboard Qrganise
= v P > ThisPC » Desktop > Game Design
~
Name
#F Quick access
conceptl

m Desktop

Open brackets

O Outlook 2016

@ Brackets

Click on open folder

®

File Edit Find View MNavigate Debug Help
New Ctrl+N
Open... Ctrl+0
Open Folder... Ctrl +Alt+O
MNnan Rarant Alda

Select Games Design from the desktop

[6 choose a foider

- 1 This PC » Desktop > Game Design

@

Organise ~ New folder

#* Quick access

oncestt
m Desktop coreen!

% Downloads
Documents
& Pictures

Toments
& OneDrive
= This PC

o Network

Folder: | Game Design

=
Once you see the above view, click on select folder

This will provide a menu system in brackets that looks like this

From here, click on the triangle next to concept to open up the folder, then right click inside
conceptl and select new file

New File
New Folder

Rename F2

Nealeod~

Name this file conceptl.html

conceptl.html

Create a new folder called images, right click on conceptl folder and select new folder

R B

Lbame Des

el ol =

concepti

Mew File
New Folder

Rename F2

conceptl.’

Name the folder images

conceptl.html

Download the resource file from http://www.angelshadowx.com/pd/resources.zip

Right click on the zip file and extract all items

Open

< - -
Umiielies Open in new window

@ Open with Brackets

Extract All...

From there navigate to the newly created resource file, go into the concept 1 folder, you should see
the following

= v > ThisPC > Desktop > resources > conceptl
~
3 Quick access
m Desktop »
& Downloads A concept1
[€ Documents o
=1 Pictures »
Torrents »
&& OneDrive
= This PC

» 3D Objects
v @ Desktop
Game Design
New folder
v resources

concept1

Next copy and paste the conceptl.jpg into the games design/conceptl/images folder

b » This PC > Desktop » Game Design > conceptl > images
~ e
MName Date modified
ESS -
8] concept1 2/08/2017 8:55 AN

Now when we look inside brackets, if you expand the image folder you will see the following

conceptl.png

conceptl. html

Now we start to code up the concept of the game loop inside brackets.

Click on conceptl.html, you will be presented with the following view

http://www.angelshadowx.com/pd/resources.zip

conceptl.html

In the right-hand panel, type the following code

1 <!DOCTYPE html>

2 Y <html>

3 <head>

4 <title>Concept 1l</title>
5 <style type="text/css'">
6 </style>

7 </head>

8 <body>

9 <script>
10 </script>
11 </body>

12 </html>

This is the base code that we will use for all the pages we create.

Now we will add some content and styles to the page.

1 <!DOCTYPE html>

2V <html>

3 <head>

4 <title>Concept 1</title>

5 <style type="text/css">

6 .canvasColour{background-color: silver; margin-left: 50px; border-radius: 15px;}

T p{margin-left: 50px;}

8 ul{margin-left: 50px;}

9 </style>

10 </head>

11 <body>

12 <canvas id="myCanvas" width="1000" height="600" class="canvasColour"></canvas>

13 <p>To view Javascript code, each browser is unique in its opening of the developer tools.</p>
14

15 Edge: F12 or click on the 3 dots, then click on Developer tools

16 Chrome: Ctrl+Shift+J or click on the 3 dots, then More tools, then Developer tools</1li>
17 Firefox: Ctrl + Shift + K or click on the 3 bars, then Developer, then|Web Console</1i>
18 <ful>

19 <script>

20 </script>

21 </body>

22 </html>

Once this is typed up, save the page

File Edit Find
New Ctrl+N
Open... Ctrl+O
Open Folder... Ctrl+Alt+O
Open Recent... Alt+O
Close Ctrl+W
Close All Ctrl+Shift+W
Save Ctrl+S
Save All Ctrl+Alt+S
Save As... Ctrl+Shift+S

Next, go back to the desktop, go into the folder Game Design and then Conceptl

oara

CTOarms=e

| > ThisPC > Desktop > Game Design > conceptl

Eay
MName

*) | images

@conce t1
s B concep

Double click on conceptl.html. This will open the page in your default web browser(In my case
Edge).

EEe— R
€ 2 O B O e

e/ Deskiop/Gamea20Design/concept] fconcept! himl

To view Javascript code, each browser is unique ia its opening of the developer tools.
. Edee: 12 occlick o he § dot then ik on Deeloper oo

CkHihanwnhdsmh!dﬁn:hmMmhﬂhdunDﬂdnpﬂhnk
Fnﬁm(‘ﬂ+ih1ﬁ+lu(nlmkund:=3 bars, then Developer, then Web Console

From here, open the console, you should see the following

T —
“ 2 0@

@ fileif}C:/Users/seant/Desktop/Games20Design/concept/concept] himi

To view Javascript code, each browser is unique in its opening of the developer tools.

= Edge: F12 or click on the 3 dots, lick on De
+ Chrome: Ctrl+Shift+] or elick on the 3 dots, mAnMoumnls then Developer tools
* Firefox: Ctrl + Shift + K or click on the 3 bars, then Developer, then Web Console

B O>ioor tewon_petomance __Wemory _fraoten |
D) o wamings oo Logs B L] resene og
O e, vavigation accurred

@y1300: Wavsgation occureed.
>

The console will be used to view the workings of JavaScript and allow issues to be located as well as
tracking aspects of the code.

Next, back into brackets and we will start to add JavaScript to the page

Code

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

<script>

var canvasObject = document.getElementById("myCanvas™);
var ctx = canvasObject.getContext('2d');

var gameWidth = canvasObject.width;
var gameHeight = canvasObject.height;
//background image

var bgImage = new Image();
bgImage.src = "images/conceptl.png";
bgImage.addEventListener('load',init,false);
var fps =120;

window.requestAnimFrame = (function(){
return window.requestAnimationFrame |l
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame |]
window.msRequestAnimationFrame |
window.oRequestAnimationFrame I
function(callback){
window.setTimeout(callback, 1000 / fps);
s

P Os

var timer = 03

function init()

{
gamelLoop() ;
}
function gameloop()
{
setTimeout(function()
{
requestAnimFrame(init);
clearscreen();
drawBackground() ;
timer++;
console. log(timer);
}1,1000/fps) ;
1
function clearScreen()
{
ctx.clearRect(0,0,gameWidth,gameHeight) ;
}
function drawBackground()
{
ctx.drawImage(bgImage,0,0);
¥

</script>

Save and test

B ‘E‘ECDHCEPI'I X |+ v

6 % O @ (O] file:///C:/Users/seanc/Desktop/Game%20Desiqgn/concept1/concept1.html

To view Javascript code, each browser is unique in its opening of the developer tools.

» Edge: F12 or click on the 3 dots, then click on Developer tools
* Chrome: Ctrl+Shift+J or click on the 3 dots, then More tools, then Developer tools
+ Firefox: Ctrl + Shift + K or click on the 3 bars, then Developer, then Web Console

Elements Console Debugger Network Performance Memory Emulation

m Errors Warnings Info Logs]m] [] Preserve Log

za0

241

242

243

244

245

When you run this up, you will notice that the console has a set of numbers that are continuously
counting up, this is due to the function gamelLoop() repeating all of the functions inside of it. This si
the game loop we need to create engaging elements for a game.

Time to examine aspects of the code.

Code Breakdown
The below code allows the JavaScript to manipulate elements of the canvas.

var canvasObject = document.getElementById("myCanvas");
var ctx = canvasObject.getContext('2d');

var gameWidth = canvasObject.width;

var gameHeight = canvasObject.height;

The below code creates a variable that loads up the background image. The addEventListener line
will instigate the init function once the background image has been loaded into memory.

- o e T
//background image

var bgImage = new Image();

bgImage.src = "images/conceptl.png";
bgImage.addEventListener('load',init,false);

The below code is the looping code that works across browsers. It’s designed to eliminate the
differences of animation looping that the different rendering engines have. The fps variable allows
us some control over the frames per second in a browser.

var fps =120;

window.requestAnimFrame = (function(){
return window.requestAnimationFrame |]
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame | |
window.msRequestAnimationFrame |]
window.oRequestAnimationFrame |
function(callback){
window.setTimeout(callback, 1000 / fps);
}s

DO;

The below variable exists so we can write something to the console
var timer = 03
The below code is the init function, this is called once the background image has been loaded, and

hence, start the game loop. It can be an area where you would set amount of lives, health levels and
so forth before the game play starts.

function init()

{

gamelLoop() ;

The below code is the gameloop, this is the primary function which Is redrawn a lot, it is where we
manipulate graphics and determine user input. In this case, it calls the requestAnimFrame first, so
this will work with out loop. Then a clearScreen function, drawBackground function, increment the
timer variable by 1 and then write the timer information to the console. All whilst looping.

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
timer++;
console.log(timer);
},1000/fps);
}

The below code clears the canvas of all graphical elements when run. This will remove ghost images

during animation.

function clearScreen()

{
ctx.clearRect(0,0,gameWidth,gameHeight) ;

The below code draws the background image. bglmage is the image object, where 0,0 is the X,Y co-
ordinates of where to start drawing the item on the screen. 0,0 is the top left hand corner.

function drawBackground()

{
ctx.drawImage(bgImage,®,0);

Concept 2 Tutorial

To start with, in the games design folder create a new folder called concept2

> This PC » Desktop > Game Design

Name
t1
+ concep
concept2
»

Now to speed up the coding, we can copy the conceptl.html file into the concept2 folder and then

rename it to concept2.html

Board Tgane Tew

> ThisPC > Desktop > Game Design > concept2

Open
[63) Open with Brackets
[Edit with Notepad++
E3 Scan with Windows Defender...
* & Share
Open with
Give access to
B Add to archive..
8 Add to “conceptirar
B Compress and email.
B Compress to “concept1.rar” and email
Restore previous versions
PoweriSO

Send to

Cut

Copy

Create shortcut
Delete
Rename

Name ate modified

e conceptl 2017 350 AM

In addition, create the images folder and transfer the files from the resources\concept2 folder to the

images folder.

> This PC > Desktop > resources > concept2

n ~
Name

@ concept2
E— down

& fish

& reft

@ right

6] yp

9

TpoTarS g v e
> This PC > Desktop > Game Design > concept? > images

A

o ¥ e w §

esign

pt1 concept2 down fish left right up

Once this is done, return to brackets and close the conceptl.html file (small x next to name) and

minimise the conceptl folder.

king Files

conceptl.html

Then expand the concept2 folder and double click concept2.html

1 [<!DOCTYPE html>
EETIEp L 2 v <html>
3 <head>
4 <title>Concept
5 <style type="t«
6 .canvasCol«
[p{margin-T
concept2. html = ul _[mar g—i n--
2 </style>
10 </head>
11 <body>

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 2

iead>
<title>Concept 2</title>
<stvle tvbpbe="text/css'">

To start with let’s change the background image
//background image

var bgImage = new Image();

bgImage.src = ”1mages/concept2Lpng”;

bgImage.addEventListener('load',init,false);

var fps =120;

Then remove the timer variable and its console line.
window. setTimeout (callback, 1000 / fps);

};
HO;

function init()
.

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init)
clearScreen()
drawBackground():
},1000/fps);
}

We'll also remove the lines from the html telling us how to access the console.

ﬂbody>

<canvas id= width= height= class= >< /canvas>
<p>To view Javascript code, each browser 1is unique in its opening of the developer tools.</p>
<script>

If you save and test, you should see the following

B & B concept2 X | 4+ v
O ® o

Concept 2

To view Javascript code, each browser is unique in its opening of the developer tools.

Console Debugger Network (¥) Performance Memory Emulation

Errors Warnings Info Logs]E] [] Preserve Log
OHTML:LB@@: Navigation occurred.

>

Now we’re going to add some more functions to our page. To start with, we will programmatically
write some text to the canvas using a JavaScript function.

Add the following function

function drawText(text,x,y)

{
ctx.fillStyle= :
ctx.font = 3
ctx.fillText(text,x,y);
}

This new function is designed to use parameters to pass information into it so it can then manipulate
these elements. Even with this function now written and within the code, it is not going to do
anything until it is called. Modify the gamelLoop() function like so

function gameloop()

{

setTimeout(function()
{
requestAnimFrame(init):
clearScreen();
drawBackground () ;
drawText(,20,20)
drawText(,700,580) ;
},1000/fps);

Once you have done this, make sure you save the page and then open concept2.html in a browser.

You should see the following

B & B concept2 X |+ v
O @ o

This is a line of text

Concept 2

This is another line of text

To view Javascript code, each browser is unique in its opening of the developer tools.

Console Debugger Network () Performance Memory Emulation

Errors Warnings Info Logs IEI [] Preserve Log

@HTML1308: Navigation occurred.

>

The x and y co-ordinates are feed into the function, so in the first line x is 20 pixels from the left, in
the second line x is 700 pixels form the left. Y co-ordinate is the same, first line y is 20 pixels from the
top and in the second line, y is 580 pixels from the top.

Next, we will some images onto the canvas. Use the following code

Global variables are used in this case, as such place them above the init function and below the loop
code

/ /Arrows

var upA = new Image();
upA.src = "images/up.png";
var rightA = new Image();
rightA.src = "images/right.png";
var downA = new Image():
downA.src = "images/down.png";
var leftA = new Image();
leftA.src = "images/left.png";
//Fish

var fish = new Image();
fish.src = "images/fish.png";

function init()

These variables load the images up into memory so we can use them. Next create the following two
functions to draw the images onto the canvas.

function drawArrows()

{
ctx.drawImage(upA,140,250);
ctx.drawImage(rightA,210,350);
ctx.drawImage(downA,140,400) ;
ctx.drawImage(leftA,lb,BS@);

1

function drawFish()

{

ctx.drawImage(fish,370,120)
1

As before, even though the functions exist, we still need to use them, as such modify the gamelLoop
function like this

function gamelLoop()

{

setTimeout (function()
{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
drawText("This is a Lline of text",20,20);
drawText("This is another line of text",700,580);
drawArrows():
drawFish();
},1000/Tps);

Once you have done this, save the page and load it in a browser, you should see the following

&‘E’EConceptZ)(’-I- v
é‘ % O @ @ filey///C:/Users/seanc Desktop/Game%20Design/concept2/cor

Concept 2

This is a line of text

This is another line of text

To view Javascript code, each browser is unique in its opening of the developer tools.

Console Debugger Network Performance Memory Emulation

| Errors Warnings Info Logs E [Preserve Log

°HTML1366 : Navigation occurred.

>

Now we are going to write some code that will allow us to move the fish by clicking on the arrows.
To start with we need to capture any information that occurs when the mouse is clicked on the
canvas. To do this we start with applying an onclick capability to the canvas.

<body>
<canvas id="myCanvas" width="1000" height="600" class="canvasColour" onclick="handleClick(event)"></canvas>

From here, we write the handleClick function. Notice how we pass the event into this function, this is
what gathers the event of clicking. To start with we will add a couple of global variables, a global
variable is a variable that we can manipulate from any function.

//Fish
var fish = new Image();
fish.src = "images/fish.png";

//Mouse click location
var clickX;
var clickY;

function init()

-

From here we then write the next function

function handleClick(event)

{
var initX = event.clientX;
var initY = event.clientY;
var canvasX = canvasObject.offsetlLeft - canvasObject.scrollLeft;
var canvasY = canvasObject.offsetTop - canvasObject.scrollTop;
clickX = initX - canvasX;
clickY = initY - canvasY;
console.log('x: ',clickX,' y: '",clickY);
}

The handleClick function looks complicated but it is quite simple, it does the following:

- Collect the x,y co-ordinates of a mouse click

- Determine the offset (gap) between canvas and browser left edge

- Determine the offset (gap) between canvas and browser top

- Calculate the actual x,y values on the canvas removing the offset from the clicked point
- Writes these values to the console

When we save and go to the browser, and then click on the image, you will be able to see the x and y
co-ordinates in the console. It should look like the following

To view Javascript code, each browser is unique in its opening of the developer tool

Console Debugger Network Performance Memory

Errors Warnings Info Logs IEI [] Preserve Log

'HTMLHBG: Navigation occurred.
x: 129 y: 198
x: 217 y: 408
x: 298 y: 418
x: 199 y: 494
x: 188 y: 483

x: 483 y: 374

Next, we will have to determine where the clicks occur on the canvas, once we have that we can
manipulate the fish’s position.

But first we should figure out where we can click, to do this we gather the top left and bottom right
x/y co-ordinates of the arrows. To do this go to the browser and click in the top left and bottom right
of the up arrow.

This should give you values such as:

Errors Warnings Info Logs]El |:|
0HTML1366: Navigation occurred.
x: 176 y: 273

x: 231 y: 418

Up Arrow:

Repeat for the other arrows

Errors Warnings Info Logs]EI
oHTMLB@@: MNavigation cccurred.
®: 237 y: 373
x: 364 y: 458

>

Console Debugger

Errors Warnings Info Logs]E[Ol

Right Arrow:

OHTML13@6: Navigation occurred.
x: 179 y: 429
x: 231 y: 555

Down Arrow: ~

Elements Consale .

Errors Warnings Info Logs
t'HTMLlBB@: Navigation occurred.
®: 36 y: 378

®: 172 y: 454

Left Arrow:

With these elements located, we need to write a function to make the fish move. To start, we’ll
change the fish’s x/y co-ordinates to global variables that can be changed.

,."" ,.'"f F —.| S |-|

var fish = new Image();
fish.src = "images/fish.png";
var fishX = 370;

var fishy = 120;

These variables then need to be applied to the actual drawing of the fish. Like so

function drawFish()

{

ctx.drawImage(fish, fishX,fishy);

}

Save and test, everything should still look the same.

From here, we create the moveFish function, this will be based off using if statements to control
what we can do with the fish. To start with, let’s write the code for moving the fish up.

Write the following:

function moveFish()

{

var fishSpeed = 5;

if((clickX>=176) && (clickX<=231))

{
if((clickY>=273) && (clickY<=410))
{
fishy = fishy - fishSpeed;
console.log(fishy);
}
¥

Once this has been written, remember to add the moveFish() function to the handleClick function,

like so

function handleClick(event)

{

}

var initX
var inity

event.clientX;

event.clientY;

var canvasX canvasObject.offsetlLeft - canvasObject.scrollLeft;
var canvasy canvasObject.offsetTop - canvasObject.scrollTop;
clickX = initX - canvasX;

clickY = initY - canvasY;

console.log('x: ',clickX,' y: ',clickY);

moveFish()

Save and test, this should be able to move the fish, it’s position should be numbered in the console
to view.

Consale Debugger Network

Errors Warnings Info Logs]E[[Preserve Log

OHTMLB%: Navigation occurred.

>

x: 204 y: 326

115

x: 204 y: 326

11e

x: 204 y: 326

185

Now that we have seen the fish move up, we add the remainder movement to the fish.

Modify moveFish() like so:

function moveFish()

{
var fishSpeed = 5;
//Up Arrow
if((clickX>=176) && (clickX<=231))
{
if((clickY>=273) && (clickY<=410))
{
fishy = fishY - fishSpeed;
console.log(fishy);
}
}
//Right Arrow
if((clickX>=237) && (clickX<=364))
{
if((clickY>=373) && (clickY<=458))
{
fishX = fishX + fishSpeed;
console.log(fishy);
}
}
//Down Arrow
if((clickX>=179) && (clickX<=231))
{
if((clickY>=429) && (clickY<=555))
{
fishy = fishy + fishSpeed;
console.log(fishy);
}
}
//Left Arrow
if((clickX>=36) && (clickX<=172))
{
if((clickY>=378) && (clickY<=458))
{
fishX = fishX - fishSpeed;
console. log(fishY);
}
}
}

Once done, save and test. The fish should be able to be moved around via the arrows on the screen.

Last part of this concept is to add some animated bubbles for the ninja cat behind the fish. This can
be done quite simply by adding moving circles to the canvas. But before we can do that, we need to
be able to draw a circle.

Type up the following function

function drawCircle(radius,x,y)

{
ctx.beginPath();
ctx.arc(x,y,radius,Math.PIx2,0,true):
ctx.closePath();
ctx.stroke();

¥

And then test it in the game loop

function gamelLoop()

{

setTimeout (function()

{

requestAnimFrame(init):
clearScreen();
drawBackground () ;
drawText("This is a line of text",20,20);
drawText("This is another line of text",700,580);
drawArrows () ;
drawFish();
drawCircle(15,50,50);
| },1000/fps);
}

This should give you

This is a line of text

O

In the top corner of the screen. So, now that we now that the circle function works, we will need to
create bubble from the cat.

To start with, we'll calculate the position of the cat on the fish. This can be achieved by clicking in the
centre of the cat. It gives you this information

Elements Console I

Errors Warnings Info Logs

t'HTMLlBB@: Navigation occurred.

x: 587 y: 166

What this tells us, is that the centre of the cat is approximately 200px further on than the start of the
fish. If you recall, we gave the fish a starting x position of 370px, so I click 227px from the edge of the

fish. Now, the starting y position of the fish is 120, but a click on the bandana gave me 166, so a
difference of 46px.

Now, create a new function called bubbles like this

function bubbles()

{
var startBubblesX = fishX + randomBubble(200,240);
var startBubblesy = fishY + randomBubble(20,50);
var bubbleSize = randomBubble(5,20);
drawCircle(bubbleSize,startBubblesX,startBubblesY);

}

function randomBubble (min,max)

{
var randomNum = Math.floor((Math.random() * max) + min);
return randomNum;

1

Notice the use of the secondary function, this is to introduce you to random functionality in
JavaScript.

To make this work, we need to add back the timer variable and modify the gameLoop

//bubbles
var timer=0;

function init()

[

function gameloop()
{
setTimeout (function()
{
requestAnimFrame(init);
clearScreen()
drawBackground() ;
drawText("This is a line of text",20,20);
drawText("This is another line of text",700,580);
drawArrows () ;
drawFish();
timer++;
if(timer%120 == 0)
{
setTimeout (bubbles(), 3000);

¥
},1000/fps);

When this is saved and test, you will have little circles that pop up around the fish and cat, modifying
the timer mod command and setTimeout will change the frequency of the bubbles. Each of the
bubbles is only their briefly, to make them more consistent a differing method would be
implemented.

Concept 3 Tutorial

To start with, in the games design folder create a new folder called concept2

> This PC » Desktop » Game Design

A

Name

concept1

concept?2

ol concept3

Now to speed up the coding, we can copy the conceptl.html file into the concept3 folder and then
rename it to concept3.html

> ThisPC > Desktop > Game Design > concept2

€ conceptl
Open
[&3] Open with Brackets
[Edit with Notepad++
E3 Scan with Windows Defender..

& Share
Open with >
Give access to >

B Add to archive.

8 Add to “conceptirar

! Compress and email.

B Compress to “concept1.rar” and email

Restore previous versions

PoweriSO >
Send to >
Cut

Copy

Create shortcut

Delete

Rename ‘

In addition, create the images folder and transfer the files from the resources\concept3 folder to the
images folder.

» This PC » Desktop » resources > concept3
> This PC » Desktop » Game Design > concept3 > images

O O Name

[& concept3
e ol

& prayingMantis

concept3 fly prayingMantis spider > W spider

Once this is done, return to brackets and close the conceptl.html file (small x next to name) and
minimise the conceptl folder.

Game Design

conceptl

Working Files

concept2

conceptl.html concept3

9

Then expand the concept3 folder and double click concept3.htmi

1 <!DOCTYPE html>

concept3.html

27 <html>
Game Design 3 <head>
conceptl 4 <title>Concept 3<
ol 5 <style type="text
o 6 .canvasColour

images

concept3.html 50pX ; bO I"de r—

7 p{margin-left
8 ul{margin-Tlef
9 </style>

10 </head>

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 3
<title>Concept 3</title>

To start with let’s change the background image

var bgImage = new Image();
bgImage.src = "images/concept3.png";
hoTmace . addFvent! ictenar('lnad! _in+it . f:

Then remove the timer variable and its console line.

window.setTimeout(callback, 1000 / fps);
};
HO;

function init()
;

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init)
clearScreen();
drawBackground();
},1000/fps) ;
}

We'll also remove the lines from the html telling us how to access the console.

<body>
<canvas id="myCanvas" width="1000" height="600"
class="canvasColour"></canvas>
<script>

If you save and test, you should see the following

BB s <

é % O | file:///C:/Users/seanc/Desktop/Game%20Design/concept3/concept3.html

Console

B x

0 HTML13@e@: Navigation occurred.
concept3.html
ocurrent window: /C:/Users/seanc/Desktop/Game%2@Design/concept3/concept3.html

Now that we have this structure in place, it’s time to start loading the environment that is needed to
complete this concept.

To start with, there will be the loading of the images.
Use the following code:

The below code contains global variables to enable manipulation from any function, later on it the
program.

I//player (Praying Mantis)

var playerX = 20;

var playerY 510;

var pMantis new Image();

pMantis.src "images/prayingMantis.png";

//NPC 1 (fly)

var flyX = 10;

var flyY = 10;

var fly = new Image();
fly.src = "images/fly.png";

//NPC 2 (spider)

var spiderX = 800;

var spiderY = 500;

var spider = new Image();
spider.src = "images/spider.png";

The below code is the functions that actually draw the elements on to the canvas.

function drawPrayingMantis()

{
ctx.drawImage (pMantis,playerX,playerY);
¥
function drawFly()
{
ctx.drawImage (fly,flyX,flyY);
¥

function drawSpider ()

{

ctx.drawImage (spider,spiderX,spiderY);

The next change is a modification to the gameloop code to ensure that the functions runs

function gameloop()

{

setTimeout (function()

{
requestAnimFrame(init);
clearScreen();
drawBackground () ;
drawPrayingMantis();
drawFly();
drawSpider();

},1000/fps) ;

+

Save and test, you should see the following

BB 5 conors

e % O ﬁh ‘ (O] file:///CfUsers/seanc/Desktop/Game%20Design/concept3/concept3.hitml

Console
Errors Warnings Info Logs [[] Preserve Log

i HTML13@0: Navigation occurred.

>

Now we are going to introduce the mouse over capability, where the praying mantis will follow the
mouse around the screen. To do this, we need to capture the x/y co-ordinates and feed them into
the praying mantis’s position.

To start with, change the code on the canvas

B
<canvas id="myCanvas" width="1000" height="600" class="canvasColour" onmousemove="captureMouse(event)"></canvas>

Now, add the following function. The below code captures the x/y of the mouse, then it applies a
position change of the cursor to allow for the cursor to centre on the praying mantis image.

function captureMouse(event)

{
var x = event.clientX;
var y = event.clientY:
spriteX = pMantis.width;
spriteY = pMantis.height/2;
playerX = x - spriteX;
playerY = y - spriteY;

}

Save and test, this creates a praying mantis that follows the cursor on the screen.
Next, we will make the spider follow the praying mantis, to do this we will add the following code

function moveSpider()

{
var spiderSpeed = 3;
if(spiderX>= playerX){
spiderX = spiderX - spiderSpeed;
}else if(spiderX<= playerX){
spiderX = spiderX + spiderSpeed;
}
if(spiderY>= playerY){
spiderY = spiderY - spiderSpeed;
}else if(spiderY<= playerY){
spiderY = spiderY + spiderSpeed;
}
H

Even with the function created, we still need to activate it, to do so, we make a change to gameloop

function gameloop()
{

setTimeout (function()

{
requestAnimFrame(init):
clearScreen();
drawBackground() ;
drawPrayingMantis();
drawFly();
drawSpider ()
moveSpider();

},1000/fps);

}

Now, save an test, you should have the spider chasing down the praying mantis, it will look a little
like this

What we want to do now, is to know when the spider captures the mantis, as such, we need to
introduce collision detection. When we view the images they look perfectly normal, but they are
surrounded by a box, if you can visualise this, it would like this this:

Our next step is to determine when these boxes run into each other. To do this, we take the x/y co-
ordinate of each image, then calculate the box by using the images height and width. Once we have

these positions, we will introduce a Boolean variable to the code that will indicate when the collision
occurs.

This is done by the following code. We add a global variable so we can manipulate aspects of the
game based off collision.

//collision
var hit = false;|

Then we add the following collision code.

function msCollision()
{
var pMantisWidth = (playerX+pMantis.width) - 80;
var pMantisHeight = playerY+pMantis.height;
var spiderWidth = spiderX+spider.width;
var spiderHeight = spiderY+spider.height;
if((spiderX<=pMantisWidth) && (spiderX>= playerX)
&& (spiderY>=playerY) && (spiderY<=pMantisHeight))
{
hit = true;

}

Notice the -80 added to the praying mantis’s width, this is to let the spider end up more on the
mantis, otherwise there would be a gap between the images.

And modify the gameLoop code like the following

function gameloop()
{

if(lhit)

{

setTimeout (function()

{
requestAnimFrame (init);
clearScreen();
drawBackground () ;
drawPrayingMantis();
drawFly();
drawSpider();
moveSpider();
msCollision();

},1000/fps);

}

So, what we have achieved here is the gamelLoop stopping when the spider catches the praying
mantis. So Boolean variables have two states, true or false. And when coding, we have the
advantage of writing if(Boolean) to indicate true instead of if (Boolean == true), the exclamation
mark(!) means not, so if(!hit) translates to if not true; with not true being false.

Therefore, we set the global variable as false so we would be able to enter the game loop to start
with, once the collision has occurred, we change the Boolean value from false to true.

Now we will add a score capability and start moving the fly around.

For a score we will grab the drawText function from concept 2 and copy it in, and create a global
variable.

var score = 03
The drawText function, with a slightly lowered font size

function drawText(text,x,y)

{
ctx.fillStyle= 5
ctx.font = 3
ctx.fillText(text,x,y);
}

And we will add an updateScore function to write this information to the screen. It looks like this:

function updateScore()

{
drawText (,900,20);
drawText(score,970,20);

5
[N
B

So, once again we have elements in the code that are ready to be used, but we still need to add
them to the gameloop so we can see what is going on with it.

Modify gameloop like this

function gameLoop()

if(lhit)
{

setTimeout (function()

{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
drawPrayingMantis();
drawFly();
drawSpider();
moveSpider();
msCollision();
updateScore();

},1000/fps);

Save and test, you should see the following score appear in the top right-hand corner:

Score: 0

Concept 3

Next, we will move the fly around the screen. To make this different from the spider, we will get it to

randomly run around but box it into the canvas. To do this, we use the following code:

function moveFly()

{
var TlySpeed = 20;
var flyDirection = Math.round(((Math.random()* 4) +1)):
//console.log(flyDirection);
switch(flyDirection){
case 1: flyY = flyY-flySpeed; break;
case 2: flyX = flyX+flySpeed; break;
case 3: flyY = flyY+flySpeed; break;
case 4: flyX = flyX-flySpeed; break;
}
if(flyX<=10){flyX = 10;}
if(flyX>=950){flyX = 950;}
if(fly<=10){flyY = 10;}
if(flyy>=550){flyY = 550;}
}

This introduces the switch code, where we can examine a variable and then determine an action, it’s
a cleaner way of writing multiple if statements. We also need to turn it on in the gameloop, like so:

function gamelLoop()
{

if(!hit)

{

setTimeout(function()

{

requestAnimFrame (init);
clearScreen();
drawBackground() ;
drawPrayingMantis();
drawFly();
drawSpider ()
moveSpider();
msCollision();
moveFly();
updateScore();
},1000/fps);

}

When you run this, the fly will jitter around to changing his position every loop, which is a lot like a
fly. Next, we want to have to praying mantis catch the fly and increase our score. To do this, we will
need to implement a collision for the praying mantis and fly. This can be done using the following
code:

Start with a new global variable
//collision

var hit = false;
var eatFly = false;

Add the fly collision code

function flyCollision()

{
var pMantisWidth = (playerX+pMantis.width) - 80;
var pMantisHeight = playerY+pMantis.height;
var flywWidth = flyX+fly.width;
var flyHeight = flyY+fly.height;
if((flyX<=pMantisWidth) && (flyX>= playerX)
&& (flyY>=playerY) && (flyY<=pMantisHeight))
{
eatFly = true;
SCcore++;
}
}

Then modify the game loop code

function gameloop()
{

if(!hit)

{

setTimeout(function()

{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
drawPrayingMantis()
drawFly();
drawSpider ()
moveSpider () ;
msCollision():
moveFly();
flyCollision();
updateScore();

},1000/fps);

}

Save and test, when you run the praying mantis over the fly your score goes up until the spider
catches the praying mantis.

Which is good, except that by keeping the praying mantis over the fly just increases the score, so
now we make some modifications to re-position the fly after the collision has taken place. To make it
more interesting, we will randomise the position.

Create the following code

function bounceFly()

{
flyX = ((Math.random()*900) + 10);
flyY = ((Math.random()*500)+20) ;
eatFly = false;

Modify the gamelLoop

function gameloop()
{

if(lhit)

{

setTimeout(function()

{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
drawPrayingMantis();
drawFly ()
drawSpider():
moveSpider():
msCollision();
if(eatFly)

bounceFly();
moveFly () ;
flyCollision();
updateScore()

},1000/fps);

}

Save and test. This should give you a fly that bounces around the canvas after being caught.

Concept 4 Tutorial
To start with, in the games design folder create a new folder called concept4

II'JUUITIIH UIHITIIIIJE

» This PC > Desktop > Game Design

Name

5

concept

concept?
is

concept3
ts

conceptd

Now to speed up the coding, we can copy the conceptl.html file into the concept4 folder and then
rename it to conceptd.html

> This PC Desktop > Game Design > concept2

e conceptl 2017 50 AM
Open
[63) Open with Brackets
[Edit with Notepad++
E8 Scan with Windows Defender...

& Share
Open with >
Give access to >

B Add to archive.

B Add to “concepti.rar*

B Compress and email

B Compress to “concepti.rar” and email

Restore previous versions

PoweriSO >
Send to >
Cut

Copy

Create shortcut
Delete

Rename

In addition, create the images folder and transfer the files from the resources\concept4 folder to the
images folder.

wrgmmas

» This PC > Desktop » Game Design » concept4

» ThisPC » Desktop > resources > conceptd v O s : »
~

Name Di

- [@ @ @ e y

2 conceptd 4/

conceptd star wind fire mud g fire 4

@ mud 44

@ @ rain 4/
&l wind 4

Once this is done, move the images into the images folder and leave the audio files next to
conceptd.html. Return to brackets.

Then expand the concept4 folder and it’s images folder, you should have the following.

conceptd.png

star.png
conceptd.html
fire.mp3
mud.mp3

rain.mp3

wind.mp3

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 4
du -2

<title>Concept 4</title>
To start with let’s change the background image

//background image
var bgImage = new Image();

bgImage.src "images/concept4.png";
bgImage.addEventListener('load',init,false);

Then remove the timer variable and its console line.

window.setTimeout(callback, 1000 / fps);
};
NO;

function init()
r

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init)
clearScreen();
drawBackground();
},1000/fps)
h

We'll also remove the lines from the html telling us how to access the console.

<body>
<canvas id="myCanvas" width="1000" height="600"

class="canvasColour'"></canvas>
<script>

If you save and test, you should see the following

é % O ﬁh @ filey///C:/Users/seanc/Desktop/Game%20Design/conceptd/conceptd.htmi

From here we are going to add our star to the canvas, though instead of being a solitary star on the
canvas. It will be implemented within an array, so we can have multiple versions of the same
element. To do this, we need to create some global variables.

The primary difference in how we are doing this is that we will be creating variables that allow us to
modify the size of the image on the canvas.

Global Variables

//Star

var star = new Image();
star.src = "images/star.png";
starX = 50;

staryY = 50;

starSize = 150;

Function to draw the star

function drawStar()

{
ctx.drawImage(star,starX,starY,starSize,starSize);

}

Gameloop modification

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init) ;
clearScreen();
drawBackground();
drawStar();
},1000/fps);
1

If we save and test this, you should see the following

From here, we are going to implement 4 stars, to do this we will be using an array to assign location,
to start with.

Write the following code:

Modify the global variables

//Star
var star = new Image();
star.src = "images/star.png";

var starX = [50,250,500,700];
var starY = [50,150,250,350];
var starSize = 150;

Then the drawStar function

function drawStar()

{
for(item=0;item<=4;item++)
{
ctx.drawImage(star,starX[item],starY[item],starSize,starSize);
}
}

As you can see, this is using a for loop, so each time the loop iterates it moves to a new number in
the array. It works like this table:

Iteration starX value starY value

0 50 50

1 250 150
2 500 250
3 700 350

This progression allowed the program to store multiple values under the one name.

To make this more interesting, we’ll add some randomness to the program, so the stars will be in
various locations and assorted sizes.

Modify the code as below.

Change the global variables to:

//Star
var star new Image();
star.src = "images/star.png";
var starX = [];

var star¥Y = [];

var starSize
var maxsStars

I I
N |
LT T —

bk

Then modify the drawstars function like this

function drawStar()

{
for (item=0;1item<=maxStars;item++)
{
starX[item] = randomNumber (20,800);
starY[item] = randomNumber (20,400);
starSize[item] = randomNumber(25,100):
ctx.drawImage(star,starX[item],starY[item],starSize[item],starSize[item]);
}
}

And finally, add the new random number function

function randomNumber (min,max)

{

r = Math.round((Math.random()*max)+min)
return r;

}

If you save and test this will showcase a screen with a lot of moving stars. Such a:

If you wanted to you could slow down the flashing stars by dropping the global variable fps to a
smaller number. As fun as this was, we need to only have a few stars, so we will pull the random
calls out of the draw star function into a new function and place it under the global variables. In this
way the star parameters are calculated only once.

Make the following changes:

//Star

var star = new Image();
star.src = "images/star.png";
var starX = [];
var starY = [];
var starSize = [];
var maxStars = 3h
starInitilise();

Note the changing of maxStars to 3 from 4. This is because we will add audio to each star.
The drawstar function is cleaned up to:

function drawStar()

{
for (item=0;1item<=maxStars;item++)
{
ctx.drawImage(star,starX[item],starY[item],starSize[item],starSize[item]);
1
}

And the new function created looks like this:

function starInitilise()

{
for (item=0;1item<=maxStars;item++)
{
starX[item] = randomNumber(20,800);
starY[item] = randomNumber(20,400);
starSize[item] = randomNumber (25,100);
}
}

These changes produce a static set of 4 stars each time the page is refreshed.

Now we will add the audio tracks to the page. To start with, we have to link the audio to the page
and to achieve this we will use a 3" party addition from a company called createjs. By using this
plugin, it is possible to play multiple audio streams at once, which will be useful.

To link our audio tracks add the following.

<canvas id="myCanvas" width="1000" height="600" class="canvasColour'"></canvas>
<script src="https://code.createjs.com/createjs-2015.11.26.min.js"></script>
<script>

Without that line of code, we won’t be able to access the createjs JavaScript files.

Now we start adding in global variables to let us access the mp3 files

//Audio

var soundID_Fire = "fire";
var soundID_Mud = "mud";

var soundID_Rain = "rain";
var soundID_Wind = "wind";

loadSound () ;

The loadSound that is added to the global variable area, so to speak will activate the following
function, that we must add:

function loadSound()

{
createjs.Sound.registerSound("fire.mp3", soundID_Fire);
createjs.Sound.registerSound("mud.mp3",soundID_Mud) ;
createjs.Sound.registerSound("rain.mp3",soundID_Rain);
createjs.Sound.registerSound("wind.mp3",soundID_Wind);
}

Now we should capture the mouse click, so we have to add a modification to the canvas like this:
.

<canvas id="myCanvas" width="1000" height="600" class="canvasColour" onclick="handleClick(event)"></canvas>
From here, create the handleClick function

function handleClick(event)

{
var posX = event.clientX;
var posY = event.clientY;
var offSetX = canvasObject.offsetlLeft - canvasObject.scrollLeft;
var offSetY = canvasObject.offsetTop - canvasObject.scrollTop;
posX = posX - offSetX;
posy = posY - offSetY;
activateAudio(posX,posY);
}

Now, the handleClick function looks a little different to what has occurred previously because we
have now taken into consideration the offset of the canvas to the edge of the border. At the
moment our canvas is 50 pixels form the edge, this offset is calculated and removed to ensure that
when we click on the canvas we get much more precise reading when we click.

HandleClick is then calling the activate audio function and is passing in the corrected posX and posY.

Create activateAudio like this:

function activateAudio(x,y)

var soundToPlay = checkImage(x,y);

switch(soundToPlay){

{
case
case
case
case
¥
}

(0]

W K=

createjs.Sound.play(soundID_Fire) ;break;
createjs.Sound.play(soundID_Mud) ;break;
createjs.Sound.play(soundID_Rain) j;break;
createjs.Sound.play(soundID_Wind) ;break;

ActivateAudio collects the x/y coordinates and then feeds them into a new function called
checklmage. Once checklmage has been run, the variable soundToPlay is supplied a number, this
number is then feed into the switch command to indicate which sound element to play.

We need to create checklmage now. Code this up:

function checkImage(x,y)

{

for(item=0;item<=maxStars;item++)

{

var startX_startWidth = starX[item];

var startX_maxWidth = starX[item] + starSize[item];
var startY_startHeight = starY[item];

var startY_maxHeight = starY[item] + starSize[item];
if((x>=startX _startWidth) && (x<=startX _maxwidth))

{

if((y>=startY_startHeight) && (y<=startY_maxHeight))

{

}

return item;

Checklmage seems to be a very complicated function, but if you recall our star information is stored
within an array. Therefore when we check the image, we cycle through each element in the array,
determining it’s box co-ordinates and then comparing the click to this box. If the box is clicked then
the array position is returned so that each star can play a separate audio file.

Save and test, when you click on the stars an audio file should play, irrespective on which star and
based on the random position it ends up.

Game 1l

To start with, in the games design folder create a new folder called gamel

» This PBC > Desktop > Game Design

MName
conceptl
concept?
concept3
conceptd

game1

Now to speed up the coding, we can copy the conceptl.html file into the gamel folder and then
rename it to game.html

Goard Tgane Tew

> ThisPC > Desktop > Game Design > concept2

e conceptl 2N17 950 AM
Open
[63) Open with Brackets
[Edit with Notepad++
E3 Scan with Windows Defender...

& Share
Open with >
Give access to >

B Add to archive.

8 Add to “conceptirar

; Compress and email.

B Compress to “concept1.rar” and email

Restore previous versions

PoweriSO >
Send to >
Cut

Copy

Create shortcut
Delete
Rename

In addition, create the images folder and transfer the files from the resources\gamel folder to the
images folder.

+ ThisPC > Desktop > Game Design > gamel > images

¥ background3
] background4
8] background$
¥ conceptt

] fireball

] fiy_Effects

& gbAttack

&) ghost-Bat

5 health

& teft

Ty Y] R RO =

& mana

) right

Then expand the gamel folder and it’s images folder, you should have the following.

background3.|pg

background4.|pg
background5.|pz
conceptl.png
fireball.png
fly_Effects.png
gbAttack.png
ghost-Bat.png
health.png
left.png
left2.png
left3.png
mana.png
right.prg
stand.png

game.html

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to gamel

L

<title>Game 1l</title>
To start with let’s change the background image

//background image
var bgImage = new Image();

bgImage.src = "images/gamel.png";
bgImage.addEventListener('load',init,false);

Then remove the timer variable and its console line.

window.setTimeout(callback, 1000 / fps);
};
HO;

function init()
;

We'll also remove the lines from the html telling us how to access the console.

<body>
<canvas id="myCanvas" width="1000" height="600"
class="canvasColour'"></canvas>
<script>

Next, we add the clearScreen function and drawBackground function.

Add the following global variables

//background -image

var bgImage = new Image();

bgImage.src = "images/background4.jpg";
bgImage.addEventListener('load',init,false);
var drawX = 0;

var drawY = 0;

var fps =120;

Add function clearScreen()

function clearScreen()

{
ctx.clearRect(0,0,gameWidth,gameHeight)

Add drawBackground()

function drawBackground()

{
ctx.drawImage (bgImage,drawX,drawy)

Then we modify gameloop

function gameloop()

{
setTimeout(function()
{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
},1000/fps);
}

If you save and test, you should see the following

Click to restart

Go Full screen

Now we will add the character to the game
Use the following code

We'll need some global variables, so type this up:

//Chibi
var chibi = new Image();
chibi.src = "images/stand.png";

var chibi_left = new Image();
chibi_left.src = "images/left.png";

var chibi_right = new Image();
chibi_right.src "images/right.png";

var flyEffect = new Image();
flyEffect.src = "images/fly Effects.png";
chibi_speed = 3;

var posx = 100;
var posy = 500;

Followed by the drawChibi function

function drawChibi()
{

ctx.drawImage(chibi,posx,posy);

}

= - Y

And a modification to gameloop

function gameloop()

{
setTimeout (function()
{
requestAnimFrame(init)
clearScreen():
drawBackground() ;
drawChibi ()
},1000/fps);
1

All of this goes together to give the following page

Click to restart

Go Full screen

So we have our starting layout, now in this game we want the player chibi figure to be controlled by
keyboard, so we will modify the variables, as we will include different images; modify the drawChibi
function to take into account of these images and introduce keyboard control. Of which we will
control keypress up and keypress down. Each keypress will trigger a move capability for the
character, such as adding or removing to the x/y co-ordinates.

Global Vars

//check if the keys are pushed
document.onkeydown = KeyCheckDown}

//check if the keys are no longer pushed down
document.onkeyup = KeyCheckUp;

/ /keyGlobal

var klLeft = false;
var kRight = false;
var kUp = false;

var moveBackground = posx;
Modification of drawChibi

function drawChibi()
{
if (kLeft)
{
ctx.drawImage(chibi_left,posx,posy);
posx = posx-chibi_speed;
moveBackground = moveBackground - chibi_speed;
if(posx <=1) posx = 1;
if(posy<500) fly():

¥
else if (kRight)
{
ctx.drawImage(chibi_right,posx,posy);
posx = posx + chibi_speed;
moveBackground = moveBackground + chibi_speed;
if(posx>=900) posx=900;
if(posy<500) fly();
¥
else
{
ctx.drawImage(chibi,posx,posy);
if(kUp)
fly(;
¥

Next, we add in two functions for keyboard press.

This first function activates when the key is pressed down, to ensure that when we take our fingers
off the keys the action stops, we have the second function which checks for when the key is
released.

‘function KeyCheckDown (e)

{
var KeyID = (window.event) ? event.keyCode : e.keyCode;
//console.log("The code for whichever key is pressed: ",KeyID);
switch(KeyID)

{

case 65: //key a Left
posx = posx - chibi_speed;
kLeft = true;

break;

case 87: // w Up
posy = posy - 45;
if (posy<=0) posy = 0;
kUp = true;

break;

case 68: //key d Right
posx = posx + chibi_speed;
kRight = true;

break;

case 83: // key s Down
posy = posy + chibi_speed;
if(posy >=500)

posy=500;

kUp = true;

break;

case 32: // key spacebar
shoot = true;

break;

¥

This function sets a group of variables to false when the keys are released.

function KeyCheckUp(e)
{
/*
This function turns off the changes that are implemented when a key is pressed, this
allows for the action of movement to stop occuring.
.ﬁ./
var KeyID = (window.event) ? event.keyCode : e.keyCode;
console.log("The code for whichever key 1is pressed: ",KeyID);
switch(KeyID)
{
case 65! [//key a Left
klLeft = false;
kRight = false;
kUp = false;
break;
case 87: // w Up
kUp = false;
kLeft = false;
kRight = false;
break;
case 68: //key d Right
kRight = false;
kleft = false;
kUp = false;
break;
case 83: // key s Down
kUp = false;
klLeft = false;
kRight = false;
break;
case 32! // key spacebar
console.log("This is where we shoot",KeyID):
shoot = true;
break;

If you save and test, you will see that our character can ‘run’ around the canvas with no problems at
all. One drawback to this is that he can float in the air with no issues. To fix this, we will introduce a
function for gravity and implement the fly function which is listed in the drawChibi function

The fly function

function fly()

{
ctx.drawImage(flyEffect,posx-chibi.width,posy+(chibi.height/2)):

The gravity function.

function gravity()

{
if(posy !=500){
if (posy<=500){
posy = posy+3;}
}
else{
posy=500;
}
1

Most of the new functions will run without modifying the gameloop, but we want gravity to be a
constant in the environment, so we need to modify the function game loop like so:

function gameloop()

{

setTimeout (function()

{
requestAnimFrame(init);
clearScreen();
drawBackground () ;
drawChibi();

gravity();
},1000/fps);
}

If you save and test, we have our chibi character flying around the world, but always being pulled to
the ground, but he is unable to fall through the ground. In addition, we’ve added a fly spell effect so
at least he looks good doing it. It should look like this:

Now, we have our chibi character moving around, but the world is very static, what we will do is
attach some code to make the background move with our character. In addition we will also add
additional background images that will feed into each other.

To start, we will add some additional global variables for images.

var moveBackground = posx;

var bgImage2 = new Image();
bgImage2.src="1images/background5.jpg";
var bgImage3 = new Image();
bgImage3.src="1images/background3.jpg";
var startPos = posx;

var drawX_2 gameWidth=2;

var drawX_3 gameWidth=4;

Then we will re-write the way that backgrounds are drawn. These backgrounds take into
consideration that the character is moving and as such, use the characters movement to move the
background images.

function drawBackground()

{
var moveScreen = moveBackground - startPos;
if(moveBackground>startPos)
{
if((moveBackground>=900) && kRight)
{
ctx.drawImage(bgImage,drawX-chibi_speed,drawY);
ctx.drawImage (bgImage2,drawX_2-chibi_speed,drawY);
ctx.drawImage(bgImage3,drawX_3-chibi_speed,drawY);
¥
ctx.drawImage(bgImage,drawX-moveScreen,drawy)
ctx.drawImage(bgImage2,drawX_2-moveScreen,drawy) ;
ctx.drawImage(bgImage3,drawX_3-moveScreen,drawy)
}
else if(moveBackground<startPos)
{
ctx.drawImage(bgImage,drawX+chibi_speed,drawy);
ctx.drawImage(bgImage2,drawX_2+chibi_speed,drawY);
ctx.drawImage(bgImage3,drawX_3+chibi_speed,drawY);
}
else
{
ctx.drawImage(bgImage,drawX,drawY)
}
}

Save and test, the background images will move with the movement of the character. You should be
able to move the character onto the differing backgrounds.

Background 1

Background 2

Background 3

With our character able to move through differing landscapes, the world could be extended
indefinitely.

Before continuing, there is one aspect of the code that is linked up, yet not implemented, this is the
full screen function, it looks like this:

function goFullScreen()
{
if(canvasObject.requestFullScreen)
canvasObject.requestFullScreen();
else if(canvasObject.webkitRequestFullScreen)
canvasObject.webkitRequestFullScreen() ;
else if(canvasObject.mozRequestFullScreen)
canvasObject.mozRequestFullScreen();

This code is designed to expand the canvas to the full size of the browser.
Next, we will add the fireball effect for our character. Add the following.

Global Variables

var fireball = new TImage();
fireball.src = "images/fireball.png";
var shoot = false;

var fireballX = posx:

var fireballY = posy:

var fbCollision = false;

Drawing the fireball:

function drawFireball()

{
var fireballSpeed = 5;
if(fireballX<=1000)
{
ctx.drawImage(fireball, fireballX,fireballY,100,48);
fireballX = fireballX + fireballSpeed;
}else
{
shoot = false;
¥
}

Then we need to modify the keyDown function, this is so the fireball will leave from the character
once the spacebar is pressed.

case 32: // key spacebar
shoot = true;

fireballX = posx;
fireballY = posy;
break;

And lastly for the fireball, we modify the gameloop

function gameloop()

{

setTimeout(function()

{
requestAnimFrame(init);
clearScreen();
drawBackground() ;
drawChibi ()
if(shoot)

drawFireball();

gravity();

},1000/fps);

When you save and test, you should see something like the following

Now we will bring in an NPC for the chibi, this ghost bat will follow the chibi, so to start off with, we
will need some global variables.

//Ghost Bat
var gBat = new Image();

gBat.src = "images/ghost-Bat.png";
var ghostBatX = 1200;

var ghostBatyY = 0

As you can tell, ghost bat starts off the screen, so to make him more useful, we will add movement
to him when we draw him to the screen.

Draw ghostbat

function ghostBat()

{
ctx.drawImage(gBat, ghostBatX,ghostBatY);
moveGhostBat() ;

}

MoveGhostbat

function moveGhostBat()

{
var speed = 1;
if(ghostBatX>= posx){
ghostBatX = ghostBatX - speed;
Yelse if(ghostBatX<= posx){
ghostBatX = posx + speed;
1
if(ghostBatY>= posy){
ghostBatY = ghostBatY - speed;
}else if(ghostBatY<= posy){
ghostBatY = posy + speed;
}
}
Modify gameloop

function gameloop()

{

setTimeout(function()

{
requestAnimFrame(init);
clearScreen();
drawBackground () ;
drawChibi();
if(shoot)

drawFireball();
ghostBat();
gravity();

},1000/fps);

Once this is done, save and test. You should see the following

There is a lot that can be done to the game; elements such as health, mana can be added to the
character as well as collisions for the fireball and ghostbat.

