
Game Design
Concept 1 Tutorial
Build a website that loads a single image and demonstrates the game loop.

On your desktop create a new folder called Game Design

In this folder create a new folder called concept1

Open brackets

Click on open folder

Select Games Design from the desktop

Once you see the above view, click on select folder

This will provide a menu system in brackets that looks like this

From here, click on the triangle next to concept to open up the folder, then right click inside

concept1 and select new file

Name this file concept1.html

Create a new folder called images, right click on concept1 folder and select new folder

Name the folder images

Download the resource file from http://www.angelshadowx.com/pd/resources.zip

Right click on the zip file and extract all items

From there navigate to the newly created resource file, go into the concept 1 folder, you should see

the following

Next copy and paste the concept1.jpg into the games design/concept1/images folder

Now when we look inside brackets, if you expand the image folder you will see the following

Now we start to code up the concept of the game loop inside brackets.

Click on concept1.html, you will be presented with the following view

http://www.angelshadowx.com/pd/resources.zip

In the right-hand panel, type the following code

This is the base code that we will use for all the pages we create.

Now we will add some content and styles to the page.

Once this is typed up, save the page

Next, go back to the desktop, go into the folder Game Design and then Concept1.

Double click on concept1.html. This will open the page in your default web browser(In my case

Edge).

From here, open the console, you should see the following

The console will be used to view the workings of JavaScript and allow issues to be located as well as

tracking aspects of the code.

Next, back into brackets and we will start to add JavaScript to the page.

Code

Save and test

When you run this up, you will notice that the console has a set of numbers that are continuously

counting up, this is due to the function gameLoop() repeating all of the functions inside of it. This si

the game loop we need to create engaging elements for a game.

Time to examine aspects of the code.

Code Breakdown
The below code allows the JavaScript to manipulate elements of the canvas.

The below code creates a variable that loads up the background image. The addEventListener line

will instigate the init function once the background image has been loaded into memory.

The below code is the looping code that works across browsers. It’s designed to eliminate the

differences of animation looping that the different rendering engines have. The fps variable allows

us some control over the frames per second in a browser.

The below variable exists so we can write something to the console

The below code is the init function, this is called once the background image has been loaded, and

hence, start the game loop. It can be an area where you would set amount of lives, health levels and

so forth before the game play starts.

The below code is the gameLoop, this is the primary function which Is redrawn a lot, it is where we

manipulate graphics and determine user input. In this case, it calls the requestAnimFrame first, so

this will work with out loop. Then a clearScreen function, drawBackground function, increment the

timer variable by 1 and then write the timer information to the console. All whilst looping.

The below code clears the canvas of all graphical elements when run. This will remove ghost images

during animation.

The below code draws the background image. bgImage is the image object, where 0,0 is the X,Y co-

ordinates of where to start drawing the item on the screen. 0,0 is the top left hand corner.

Concept 2 Tutorial
To start with, in the games design folder create a new folder called concept2

Now to speed up the coding, we can copy the concept1.html file into the concept2 folder and then

rename it to concept2.html

In addition, create the images folder and transfer the files from the resources\concept2 folder to the

images folder.

 

Once this is done, return to brackets and close the concept1.html file (small x next to name) and

minimise the concept1 folder.

 

Then expand the concept2 folder and double click concept2.html

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 2

To start with let’s change the background image

Then remove the timer variable and its console line.

We’ll also remove the lines from the html telling us how to access the console.

If you save and test, you should see the following

Now we’re going to add some more functions to our page. To start with, we will programmatically

write some text to the canvas using a JavaScript function.

Add the following function

This new function is designed to use parameters to pass information into it so it can then manipulate

these elements. Even with this function now written and within the code, it is not going to do

anything until it is called. Modify the gameLoop() function like so

Once you have done this, make sure you save the page and then open concept2.html in a browser.

You should see the following

The x and y co-ordinates are feed into the function, so in the first line x is 20 pixels from the left, in

the second line x is 700 pixels form the left. Y co-ordinate is the same, first line y is 20 pixels from the

top and in the second line, y is 580 pixels from the top.

Next, we will some images onto the canvas. Use the following code

Global variables are used in this case, as such place them above the init function and below the loop

code

These variables load the images up into memory so we can use them. Next create the following two

functions to draw the images onto the canvas.

As before, even though the functions exist, we still need to use them, as such modify the gameLoop

function like this

Once you have done this, save the page and load it in a browser, you should see the following

Now we are going to write some code that will allow us to move the fish by clicking on the arrows.

To start with we need to capture any information that occurs when the mouse is clicked on the

canvas. To do this we start with applying an onclick capability to the canvas.

From here, we write the handleClick function. Notice how we pass the event into this function, this is

what gathers the event of clicking. To start with we will add a couple of global variables, a global

variable is a variable that we can manipulate from any function.

From here we then write the next function

The handleClick function looks complicated but it is quite simple, it does the following:

- Collect the x,y co-ordinates of a mouse click

- Determine the offset (gap) between canvas and browser left edge

- Determine the offset (gap) between canvas and browser top

- Calculate the actual x,y values on the canvas removing the offset from the clicked point

- Writes these values to the console

When we save and go to the browser, and then click on the image, you will be able to see the x and y

co-ordinates in the console. It should look like the following

Next, we will have to determine where the clicks occur on the canvas, once we have that we can

manipulate the fish’s position.

But first we should figure out where we can click, to do this we gather the top left and bottom right

x/y co-ordinates of the arrows. To do this go to the browser and click in the top left and bottom right

of the up arrow.

This should give you values such as:

Up Arrow:

Repeat for the other arrows

Right Arrow:

Down Arrow:

Left Arrow:

With these elements located, we need to write a function to make the fish move. To start, we’ll

change the fish’s x/y co-ordinates to global variables that can be changed.

These variables then need to be applied to the actual drawing of the fish. Like so

Save and test, everything should still look the same.

From here, we create the moveFish function, this will be based off using if statements to control

what we can do with the fish. To start with, let’s write the code for moving the fish up.

Write the following:

Once this has been written, remember to add the moveFish() function to the handleClick function,

like so

Save and test, this should be able to move the fish, it’s position should be numbered in the console

to view.

Now that we have seen the fish move up, we add the remainder movement to the fish.

Modify moveFish() like so:

Once done, save and test. The fish should be able to be moved around via the arrows on the screen.

Last part of this concept is to add some animated bubbles for the ninja cat behind the fish. This can

be done quite simply by adding moving circles to the canvas. But before we can do that, we need to

be able to draw a circle.

Type up the following function

And then test it in the game loop

This should give you

In the top corner of the screen. So, now that we now that the circle function works, we will need to

create bubble from the cat.

To start with, we’ll calculate the position of the cat on the fish. This can be achieved by clicking in the

centre of the cat. It gives you this information



What this tells us, is that the centre of the cat is approximately 200px further on than the start of the

fish. If you recall, we gave the fish a starting x position of 370px, so I click 227px from the edge of the

fish. Now, the starting y position of the fish is 120, but a click on the bandana gave me 166, so a

difference of 46px.

Now, create a new function called bubbles like this

Notice the use of the secondary function, this is to introduce you to random functionality in

JavaScript.

To make this work, we need to add back the timer variable and modify the gameLoop

When this is saved and test, you will have little circles that pop up around the fish and cat, modifying

the timer mod command and setTimeout will change the frequency of the bubbles. Each of the

bubbles is only their briefly, to make them more consistent a differing method would be

implemented.

Concept 3 Tutorial
To start with, in the games design folder create a new folder called concept2

Now to speed up the coding, we can copy the concept1.html file into the concept3 folder and then

rename it to concept3.html

In addition, create the images folder and transfer the files from the resources\concept3 folder to the

images folder.

 

Once this is done, return to brackets and close the concept1.html file (small x next to name) and

minimise the concept1 folder.

 

Then expand the concept3 folder and double click concept3.html

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 3

To start with let’s change the background image

Then remove the timer variable and its console line.

We’ll also remove the lines from the html telling us how to access the console.

If you save and test, you should see the following

Now that we have this structure in place, it’s time to start loading the environment that is needed to

complete this concept.

To start with, there will be the loading of the images.

Use the following code:

The below code contains global variables to enable manipulation from any function, later on it the

program.

The below code is the functions that actually draw the elements on to the canvas.

The next change is a modification to the gameloop code to ensure that the functions runs

Save and test, you should see the following

Now we are going to introduce the mouse over capability, where the praying mantis will follow the

mouse around the screen. To do this, we need to capture the x/y co-ordinates and feed them into

the praying mantis’s position.

To start with, change the code on the canvas

Now, add the following function. The below code captures the x/y of the mouse, then it applies a

position change of the cursor to allow for the cursor to centre on the praying mantis image.

Save and test, this creates a praying mantis that follows the cursor on the screen.

Next, we will make the spider follow the praying mantis, to do this we will add the following code

Even with the function created, we still need to activate it, to do so, we make a change to gameLoop

Now, save an test, you should have the spider chasing down the praying mantis, it will look a little

like this

What we want to do now, is to know when the spider captures the mantis, as such, we need to

introduce collision detection. When we view the images they look perfectly normal, but they are

surrounded by a box, if you can visualise this, it would like this this:

Our next step is to determine when these boxes run into each other. To do this, we take the x/y co-

ordinate of each image, then calculate the box by using the images height and width. Once we have

these positions, we will introduce a Boolean variable to the code that will indicate when the collision

occurs.

This is done by the following code. We add a global variable so we can manipulate aspects of the

game based off collision.

Then we add the following collision code.

Notice the -80 added to the praying mantis’s width, this is to let the spider end up more on the

mantis, otherwise there would be a gap between the images.

And modify the gameLoop code like the following

So, what we have achieved here is the gameLoop stopping when the spider catches the praying

mantis. So Boolean variables have two states, true or false. And when coding, we have the

advantage of writing if(Boolean) to indicate true instead of if (Boolean == true), the exclamation

mark(!) means not, so if(!hit) translates to if not true; with not true being false.

Therefore, we set the global variable as false so we would be able to enter the game loop to start

with, once the collision has occurred, we change the Boolean value from false to true.

Now we will add a score capability and start moving the fly around.

For a score we will grab the drawText function from concept 2 and copy it in, and create a global

variable.

The drawText function, with a slightly lowered font size

And we will add an updateScore function to write this information to the screen. It looks like this:

So, once again we have elements in the code that are ready to be used, but we still need to add

them to the gameLoop so we can see what is going on with it.

Modify gameLoop like this

Save and test, you should see the following score appear in the top right-hand corner:

Next, we will move the fly around the screen. To make this different from the spider, we will get it to

randomly run around but box it into the canvas. To do this, we use the following code:

This introduces the switch code, where we can examine a variable and then determine an action, it’s

a cleaner way of writing multiple if statements. We also need to turn it on in the gameLoop, like so:

When you run this, the fly will jitter around to changing his position every loop, which is a lot like a

fly. Next, we want to have to praying mantis catch the fly and increase our score. To do this, we will

need to implement a collision for the praying mantis and fly. This can be done using the following

code:

Start with a new global variable

Add the fly collision code

Then modify the game loop code

Save and test, when you run the praying mantis over the fly your score goes up until the spider

catches the praying mantis.

Which is good, except that by keeping the praying mantis over the fly just increases the score, so

now we make some modifications to re-position the fly after the collision has taken place. To make it

more interesting, we will randomise the position.

Create the following code

Modify the gameLoop

Save and test. This should give you a fly that bounces around the canvas after being caught.

Concept 4 Tutorial
To start with, in the games design folder create a new folder called concept4

Now to speed up the coding, we can copy the concept1.html file into the concept4 folder and then

rename it to concept4.html

In addition, create the images folder and transfer the files from the resources\concept4 folder to the

images folder.

 

Once this is done, move the images into the images folder and leave the audio files next to

concept4.html. Return to brackets.

Then expand the concept4 folder and it’s images folder, you should have the following.

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to concept 4

To start with let’s change the background image

Then remove the timer variable and its console line.

We’ll also remove the lines from the html telling us how to access the console.

If you save and test, you should see the following

From here we are going to add our star to the canvas, though instead of being a solitary star on the

canvas. It will be implemented within an array, so we can have multiple versions of the same

element. To do this, we need to create some global variables.

The primary difference in how we are doing this is that we will be creating variables that allow us to

modify the size of the image on the canvas.

Global Variables

Function to draw the star

Gameloop modification

If we save and test this, you should see the following

From here, we are going to implement 4 stars, to do this we will be using an array to assign location,

to start with.

Write the following code:

Modify the global variables

Then the drawStar function

As you can see, this is using a for loop, so each time the loop iterates it moves to a new number in

the array. It works like this table:

Iteration starX value starY value

0 50 50

1 250 150

2 500 250

3 700 350

This progression allowed the program to store multiple values under the one name.

To make this more interesting, we’ll add some randomness to the program, so the stars will be in

various locations and assorted sizes.

Modify the code as below.

Change the global variables to:

Then modify the drawstars function like this

And finally, add the new random number function

If you save and test this will showcase a screen with a lot of moving stars. Such a:

If you wanted to you could slow down the flashing stars by dropping the global variable fps to a

smaller number. As fun as this was, we need to only have a few stars, so we will pull the random

calls out of the draw star function into a new function and place it under the global variables. In this

way the star parameters are calculated only once.

Make the following changes:

Note the changing of maxStars to 3 from 4. This is because we will add audio to each star.

The drawstar function is cleaned up to:

And the new function created looks like this:

These changes produce a static set of 4 stars each time the page is refreshed.

Now we will add the audio tracks to the page. To start with, we have to link the audio to the page

and to achieve this we will use a 3rd party addition from a company called createjs. By using this

plugin, it is possible to play multiple audio streams at once, which will be useful.

To link our audio tracks add the following.

Without that line of code, we won’t be able to access the createjs JavaScript files.

Now we start adding in global variables to let us access the mp3 files

The loadSound that is added to the global variable area, so to speak will activate the following

function, that we must add:

Now we should capture the mouse click, so we have to add a modification to the canvas like this:

From here, create the handleClick function

Now, the handleClick function looks a little different to what has occurred previously because we

have now taken into consideration the offset of the canvas to the edge of the border. At the

moment our canvas is 50 pixels form the edge, this offset is calculated and removed to ensure that

when we click on the canvas we get much more precise reading when we click.

HandleClick is then calling the activate audio function and is passing in the corrected posX and posY.

Create activateAudio like this:

ActivateAudio collects the x/y coordinates and then feeds them into a new function called

checkImage. Once checkImage has been run, the variable soundToPlay is supplied a number, this

number is then feed into the switch command to indicate which sound element to play.

We need to create checkImage now. Code this up:

CheckImage seems to be a very complicated function, but if you recall our star information is stored

within an array. Therefore when we check the image, we cycle through each element in the array ,

determining it’s box co-ordinates and then comparing the click to this box. If the box is clicked then

the array position is returned so that each star can play a separate audio file.

Save and test, when you click on the stars an audio file should play, irrespective on which star and

based on the random position it ends up.

Game 1
To start with, in the games design folder create a new folder called game1

Now to speed up the coding, we can copy the concept1.html file into the game1 folder and then

rename it to game.html

In addition, create the images folder and transfer the files from the resources\game1 folder to the

images folder.

 

Then expand the game1 folder and it’s images folder, you should have the following.

From here we need to change a few little parts of the code before we start.

Let’s change the title from concept 1 to game1

To start with let’s change the background image

Then remove the timer variable and its console line.

We’ll also remove the lines from the html telling us how to access the console.

Next, we add the clearScreen function and drawBackground function.

Add the following global variables

Add function clearScreen()

Add drawBackground()

Then we modify gameLoop

If you save and test, you should see the following

Now we will add the character to the game

Use the following code

We’ll need some global variables, so type this up:

Followed by the drawChibi function

And a modification to gameLoop

All of this goes together to give the following page

So we have our starting layout, now in this game we want the player chibi figure to be controlled by

keyboard, so we will modify the variables, as we will include different images; modify the drawChibi

function to take into account of these images and introduce keyboard control. Of which we will

control keypress up and keypress down. Each keypress will trigger a move capability for the

character, such as adding or removing to the x/y co-ordinates.

Global Vars

Modification of drawChibi

Next, we add in two functions for keyboard press.

This first function activates when the key is pressed down, to ensure that when we take our fingers

off the keys the action stops, we have the second function which checks for when the key is

released.

This function sets a group of variables to false when the keys are released.

If you save and test, you will see that our character can ‘run’ around the canvas with no problems at

all. One drawback to this is that he can float in the air with no issues. To fix this, we will introduce a

function for gravity and implement the fly function which is listed in the drawChibi function

The fly function

The gravity function.

Most of the new functions will run without modifying the gameloop, but we want gravity to be a

constant in the environment, so we need to modify the function game loop like so:

If you save and test, we have our chibi character flying around the world, but always being pulled to

the ground, but he is unable to fall through the ground. In addition, we’ve added a fly spell effect so

at least he looks good doing it. It should look like this:

Now, we have our chibi character moving around, but the world is very static, what we will do is

attach some code to make the background move with our character. In addition we will also add

additional background images that will feed into each other.

To start, we will add some additional global variables for images.

Then we will re-write the way that backgrounds are drawn. These backgrounds take into

consideration that the character is moving and as such, use the characters movement to move the

background images.

Save and test, the background images will move with the movement of the character. You should be

able to move the character onto the differing backgrounds.

Background 1

Background 2

Background 3

With our character able to move through differing landscapes, the world could be extended

indefinitely.

Before continuing, there is one aspect of the code that is linked up, yet not implemented, this is the

full screen function, it looks like this:

This code is designed to expand the canvas to the full size of the browser.

Next, we will add the fireball effect for our character. Add the following.

Global Variables

Drawing the fireball:

Then we need to modify the keyDown function, this is so the fireball will leave from the character

once the spacebar is pressed.

And lastly for the fireball, we modify the gameloop

When you save and test, you should see something like the following

Now we will bring in an NPC for the chibi, this ghost bat will follow the chibi, so to start off with, we

will need some global variables.

As you can tell, ghost bat starts off the screen, so to make him more useful, we will add movement

to him when we draw him to the screen.

Draw ghostbat

MoveGhostbat

Modify gameloop

Once this is done, save and test. You should see the following

There is a lot that can be done to the game; elements such as health, mana can be added to the

character as well as collisions for the fireball and ghostbat.

