
沉浸式环境教程

统一

目标：

- 碰撞

- 触发的事件

- 不断变化的场景

- 简单的 npc

加载统一

生成对象: 统一中的冲突

目的: 构建各种元素并测试不同的碰撞类型。

开门

构建以下场景

主摄像头是这样排列的:

球体被称为玩家, 具有以下属性

向播放机添加刚体。组件→物理→刚性

立方体的形状像一扇门, 具有以下属性

地板上的材料涂在上面

现在我们有了基本的布局, 我们将添加代码来移动玩家。

创建一个名为 "播放器控制器" 的新脚本, 并将其应用于播放器。

将其放在脚本文件夹中, 然后在可视工作室中打开它, 并应用以下代码

和以下信息

在 unity 中保存和测试。

为了确保玩家球体在朝向立方体时可见, 我们将更改立方体的颜色。

选择的颜色是:

现在, 我们有能力看到球体接近门的时候, 我们需要实现一个碰撞

区域和一个到了那里时发生的效果, 在这种情况下, 我们就会移动

门。

现在, 让我们检查多维数据集上的检查器。

重新打开箱式对撞机。

所以, 对撞机是让我们的物体相互互动的原因。

计划是在门对象周围添加一个对撞机 (现在是将立方体重命名到门的好时机), 并让它触发事件

。

将多维数据集重命名为 "门"。

转换是预期的, 没有什么

不寻常的是, 立方体网滤波器是
很好, 但是 请注意它是如何自动拥有
箱 对撞机 它是积极的, 如果你

使箱体对撞机处于活动状态, 即
取下刻度, 然后播放。您将看到

玩家能够直接通过 中

。

门对象。

这样做并进行测试

右键单击层次结构并添加一个空游戏对象。

在层次结构中拖动门对象上的触发器门, 以这种方式创建一个父/子链接。

现在, 当看着现场, 球体对撞机太小, 无法使用, 因为我们希望它触发之前, 玩家打的门, 这样, 扩

大它。

从这里, 我们添加一个 spher e 对撞机在这个对象上, 重命名

从游戏对象到触发器门的对象。

在检查器中, 我们需要改变球体对撞机的属性, 所以它是一个触发器, 而不是一个对撞机。否则

我们的玩家将无法通过门区。所以, 在球体对撞机上, 检查是触发框。

现在我们已经准备好了, 让我们向触发器门对象添加一个脚本。

将创建的脚本移动到脚本文件中, 然后将其打开视觉工作室并添加以下代码。

保存这一点, 然后回到统一。

确保脚本附加到触发器门对象

查看脚本时, 请注意转换门代码与 "无" 对齐的方式, 这是在等待指向实际对象的链接, 将门对象

拖入其中或使用目标定位对象。

运行程序, 你应该看到的门抬起允许玩家球体在它下面移动。

在测试速度5没有顺利打开门的时候, 当我把打开的

速度降到1时, 门的打开就更顺畅了。

现在, 我们有了动画, 让我们添加一些音频到现场。从 l @ g 中获取音频文件, 或者如果您有一个

免费的. org 帐户, 您可以从这里获得相同的声音

:https://freesound.org/people/mredig/sounds/120557/

从添加音频文件夹开始, 然后将音频导入到系统中

在音频文件夹中右键单击并导入新资产

https://freesound.org/people/mredig/sounds/120557/

音频文件夹现在将如下所示:

在触发器门对象上, 拖动音频文件, 它应该如下所示

现在, 如果你运行的游戏, 你会听到噪音开始, 这是比在醒着的时候使用这个游戏是有标记的。

因此, 当游戏加载时, 它将运行音频文件。

为了阻止这种行为, 在醒着的时候不打游戏。

现在, 我们必须在触发器门上添加一些代码, 使音频能够激活一次我们打开门。

要做到这一点, 我们需要访问音频源, 并使其发生在正确的位置, 该位置是一旦我们开始运动的

门。将代码修改为以下内容:

我们两者兼而有之的原因播放 () 和 stop (), 以便我们可以对声音有更多的控制, 也取决于音频剪

辑, 您可能需要修剪它, 使其发生在你想要的速度。

一旦编码, 保存和测试。

使用触发器更改场景

使用我们已经创建的相同场景, 将场景另存为 0级,

这将默认为资产文件夹;移动到 "场景" 文件夹。

T母鸡创建一个新的场景如下, 并保存为1级。

地板材料被应用到玩家身上, 门材料被涂在飞机上, 一个简单的红色被涂在一个新的立方体上

。

将脚本、播放器控制器连接到播放器, 以确保我们可以移动球体。

保存和测试, 如果相机的旋转关闭, 控件似乎倒置,

它的确定, 这只是为了测试的目的。

保存此场景并返回到0级。

在0级上, 创建一个新多维数据集。并将其定位为这样。

目标是分配一个对撞机, 就像门一样, 除了不是移动物体, 而是在场景之间跳来跳去。

从将这两个场景添加到生成设置开始。

现在, 让我们创建一个新的空游戏对象, 就像我们以前一样, 将其命名为触发器弹跳并将其放置

在多维数据集上, 然后向对象添加一个球体对撞机。将多维数据集重命名为 "场景弹跳"。

将 "触发器弹跳" 拖到 "场景弹跳" 上, 使其成为孩子。

确保您已勾选触发触发触发触发

确保球面对撞机封装立方体。

添加以下代码。

回到 unity, 对检查器进行更改, 以确保发送要更改的正确场景索引。

在场景弹跳上添加一个名为 "bsecesalk" 的新脚本

一旦你做到了这一点, 移动 sc r 进入脚本文件夹, 并
然后 在 visual studio 中打开它。

保存和测试, 你应该能够走到立方体中的球员, 并反弹到下一个场景。

在级别1上对另一个多维数据集重复此过程。

步骤如下:

- 空游戏对象

- 应用球面对撞机

- 确保已选中触发器

- 链接链接级脚本

- 确保应用了正确的场景索引。

在现场

在检查器中

在层次结构中

如果不起作用, 请确保将球体标记为播放机。

添加简单的 npc

使用相同的项目, 创建一个新场景并将其另存为级别 2, 然后将其添加到生成设置中, 并在1级场

景中将弹跳级别从0更改为2。这样我们就可以从 0级-> 1 > 2

在2级上执行以下操作:

添加一个平面, 将其放大 5, 并在其上使用相同的门材料。

创建球体, 为其分配新的绿色材质。

将刚体和运动脚本应用到玩家身上, 并确保球体被标记为玩家。

位置 中

。

 相机上方和后面的 p 层, 所以我们可以 看看是什么

会发生的

接下来创建一个多维数据集, 调用它反弹并应用一个空的游戏对象, 应用脚本使其, 这样, 如果

玩家碰到它, 它会反弹到0级。这正是我们迄今已经做的。

你有下面的场景

接下来, 我们添加一个 npc, 因为我们没有为此引入完全充实的字符, 创建一个胶囊, 命名它 npc,

并应用新的颜色。

我们的 npc 将从一边到另一边, 如果他与球员相撞, 球员将被送回首发现场。

所以, 我们首先需要做的是创建一个 npc 可以移动的脚本。

将其移动到脚本文件夹中。

添加以下代码

一旦完成, 保存, 然后回到团结。

在检查器中, 将 npc 对象分配给对象自移动脚本和测试的部分。您可能需要更改速度值。

你应该让胶囊从一边移动到另一边。

接下来, 将对撞机应用于 npc。

步骤如下:

- 空游戏对象

- 应用球面对撞机

- 确保已选中触发器

- 链接链接级脚本

- 确保应用了正确的场景索引。

运行该程序, 你应该被迫回到主阶段, 如果你击中了 npc, 在董事会的两侧。您可以修改代码, 使

npc 根据需要在电路板上下移动, 但在这种情况下, 只是为了使其更具挑战性, 我们将添加一些

多维数据集墙。

在墙壁之前

墙后

玩的速度, 对撞机的大小等, 这个简单的布局可以阻止用户达到最后的反弹。

当然, 你可以把球员带到一个新的场景, 祝贺他们通过关卡。

