Immersive Environments Tutorial

Unity

- Collisions

- Triggered Events
- Changing Scenes
- Simple NPCs

Load up unity

l Unity 2018.1.3f1 (64-bit)

4 Report a Problem with Unity

U Unity

Build Object: Collisions in Unity

Aim: Build various elements and test differing collision types.

Door Open

Build the following scene

The main camera is lined up like this:

—y—

The sphere has been called player and has the following attributes
W il pTLLw

P Player e
Tag |Player ~ &|layer |Defaut 4]

= |

Add a Rigidbody to the Player. Component—> Physics = Rigidody

¥ Shader | Standard

Rigidbod

The cube has been shaped like a door, and has the following attributes

© Inspector
. W [Cube Tarme
Tag|Untagged ¢ Llayer [Default ¢

y

The floor plane has the following material applied to it

Color -

And the following information

[Plane
Tag|Untagged ¢ |Layer [Default]

Now that we have the basic layout, we will add the code to move the player around.

Create a new script called playerController and apply it to the player.

2. playerControlle:

New Script

Place it in the scripts folder and then open it up in visual studio and apply the following code

@ Project | [Console

Create ~
¥ Favorites Assets » Scripts
(L0 All Materials
20 All Models
(L All Prefabs 1
= i
V G Assets

(&l Materials

class playerController : MonoBehaviour {

igidbody rb;
at speed = 7.0f;

O {1

rb = GetComponent<Rigidbody>();

Jupdate () {
moveHorizontal = Input.GetAxis("Horizontal");
moveVertical = Input.GetAxis("Vertical");

Vector3 movement = new Vector3(moveHorizontal, ©.0f, moveVertical);
rb.AddForce(movement * speed);

Save and test in Unity.

To ensure that the player sphere is visible when heading towards the cube, we’ll change the colour
of the cube.

The colour selected was this: Color a

Now that we have the ability to see the sphere when it approaches the
door, we need to implement a collision area and an effect that occurs
when we get there, in this case, we will just move the door.

B]S

Hex Color # ECB833FFF

¥ Presets =
1 @ Click to add new preset

any

Saturation

B[%] /63
A

Now, let’s examine the inspector on the cube.

The transform is as expected, nothing to
out of the ordinary, Cube mesh filter is
fine, but notice how it automatically has a
box collider on it that is active, if you
make the box collider in active, i.e.
remove the tick, and play. You will see the
player able to move straight through the
door object.

@ [Cube] [static ¥
Tag|Untagged #|layer |Default ¢

Do this and test.
Turn back on the box collider.
So, the collider is what allows our objects to interact with each other.

The plan is to add an addition collider around the door object (Now is a good time to rename cube
to door) and have it trigger an event.

Rename cube to Door.
© Inspector [HSErVICES:
 [Door] [static
Tag|Untagged ¢l layer [Defaulk

=

N

Right click on the hierarchy and add an empty game object.

From here, we add a sphere collider onto this object, rename
the object from GameObject to TriggerDoor.

© Inspector
@ [TriggerDoor
Tag | Untagged

Now, when looking at the scene, the sphere collider is too small to be of use, as we want it to
trigger before the player hits the door, as such, scale it up.

In the inspector, we need to change the sphere collider’s attribute, so it works as a trigger and not a
collider. Otherwise our player won’t be able to pass through the door area. So, on the sphere
collider, check the is trigger box.

Move the created script into the script file, then open it up it visual studio and add the following
code.

B Project

TriggeredDoor : MonoBehaviour {
Transform door;
Vector3 openDoorPosition = Vector3(@.0f,5.0f,3.0f);
Vector3 closeDoorPosition = new Vector3(e.0f,2.5f,3.0f);
t openSpeed = 5.0f;

open;

(O

01
f (open)

door.position = Vector3.Lerp(door.position, openDoorPosition, Time.deltaTime * openSpeed);

door.position = Vector3.Lerp(door.position, closeDoorPosition, Time.deltaTime * openSpeed);

if(other.tag == "Player")

TriggerOpen();

if(other.tag == "Player")

{
TriggerClose();

public void TriggerOpen()

open = true;
void TriggerClose()

open = false;

Save this and then go back to unity.

Ensure that the script is attached to the TriggerDoor Object

© Inspector _

When looking at the script, notice how the Transform door code, aligns with None, this is awaiting a
link to the actual object, drag the door object into it or use the target to locate the object.

Run the program and you should see the door lifting up to allow the player sphere to travel under
it.

During testing the speed of 5 didn’t open the door
smoothly, when | dropped the Open Speed to 1, the
door opening was much smoother.

Now that we have the animation, let’s add some audio to the scene. Grab the audio file from L@G,
or if you have a freesound.org account, you can get the same sound from here:
https://freesound.org/people/mredig/sounds/120557/

To start with add an audio folder and then import the audio into the system

Open Scene Additive

Import Package >
Export Package...

Find References In Scene

Extract From Prefab

Run API Updater...

|

Onen C# Proiect

https://freesound.org/people/mredig/sounds/120557/

The audio folder will now look like:

Assets » Audio

Now, if you run the game, you will hear the noise the start with, this is because the play on awake is
ticked. So, when the game loads, it runs the audio file.

To stop this behaviour, untick play on awake.

Now, we have to add some code to the TriggeredDoor scrip to enable the audio to activate once we
open the door.

To do this we need to access the audio source and make it occur in the correct position, that position
being once we start the movement of the door. Modify the code to the following:

(Collider other)

AudioSource audio = GetComponent<AudioSource>();
(other.tag == "Player")

TriggerOpen();
audio.Play();

(Collider other)

AudioSource audio = GetComponent<AudioSource>();
(other.tag == "Player")

TriggerClose();
audio.Stop();

The reason we have both Play() and Stop(), is so that we can have more control over the sound, also
depending on the audio clip, you may need to trim it to make it occur at the speed you want.

Once coded, save and test.

Using a trigger to change scenes

Using the same scene that we have already created, save the scene as levelO,

Q Unity 2018.1.3f1 Personal (64bit) - SampleScen

File Edit Assets GameObject Component
New Scene Ctrl+N Cente
Open Scene Ctrl+0 E
Save Scenes Ctrl+S b
Save Scene as... Ctrl+Shift+S |

This will default to the assets folder; Move into the Scenes folder.

Assets »
I8
Audio Materials Scenes Scripts levelO

Then create a new scene as below and save as levell.

The floor material was applied to the player, the door material was applied to the plane, and a
simple red was applied to a new cube.

Attach the script, playerController to the player to ensure that we can move the sphere.

' ‘. [Sphere] [static ¥
Tag |Untagged ¢|layer [Defauk i)

Save and test, if the rotation is off for the camera and
the controls seem inverted, it’s ok, this is just for
testing purposes.

Save this scene and go back to levelO.

floor @

Shader | Standard .

On levelO, create a new cube. And position it like so.

The goal is to assign a collider, just like with the door, except instead of moving the object we will
jump between scenes.

To start with add both scenes to the build settings.

Build Settings -

Now, let’s create a new Empty Game object as we did before, name it TriggerBounce and place it on
the cube, then and add a sphere collider to the object. Rename the cube to SceneBounce.

© Inspector

Drag the TriggerBounce onto SceneBounce to make it a child.

TriggerBounce

Ensure you have ticked Is Trigger on TriggerBounce

© Inspector

@ [TriggerBounce | (] static v
Tag |Untagged ¢ layer |Default ¢

Ensure the sphere collider encapsulates the cube.

On the SceneBounce add a new script called Bouncelevel

Once you have done this, move the script into the script folder and
then open it up in Visual Studio.

Add the following code.

BouncelLevel : MonoBehaviour {

int scenelIndex;

*(Collider other)

if (other.tag == "Player")
{

SceneManager.LoadScene(scenelIndex);

Back in Unity, make a change to the inspector to ensure that we are sending the correct correct
scene index to change to.

v|@ Bounce Level (Script) @ &,
Script BouncelLevel o]
Scene Index 1

Save and Test, you should be able to walk the player into the cube and bounce to the next scene.
Repeat the process on levell for the other cube.

Steps are:

- Empty GameObject

- Apply Sphere collider

- Ensure is trigger is checked

- Link Bouncelevel Script

- Ensure the correct Scene Index is being applied.

In the scene

In the Inspector

TriggerBounce

If it doesn’t work, ensure that the sphere is tagged as Player.

g

Tag Wn_—ﬂ Layer |Default

Adding simple NPCs

Using the same project, create a new scene and save it as level 2, then add it to the build settings
and change the bounce level from 0 to 2 in the levell scene. This way we can move from level 0-
>1>2

Build Settings

On level2 do the following:

Add a plane, scale it up 5 and use the same door material on it.

Create sphere, assign it a new green Material.

Color -

Position the camera above and behind the player so we can see what is
going to occur.

Apply a rigid body and movement script to the player and ensure the sphere is tagged as player.

Next create a cube, call it bounce and apply an empty game object to it, apply the scripts to make it
so if the player runs into it, it will bounce them to levelO. Exactly what we have already done so far.

You have the following scene

Next, we add a NPC, as we are not bringing in fully fleshed out characters for this, create a capsule,

name it NPC and apply a new colour to it.

' Color =’

1

‘ »# I
E

w
w
Y
c
s
=
-
=
[

Saturation

=
I -

R

G |38 |

B 38

A] 255
Hex Color # 4F2626FF

¥ Presets =

@ Click to add new preset

© Inspector [SEVicESIII———

™ [NPC | [static ¥
Tag | Untagged 4+ | Layer | Default $)
¥ .~ Transform L]
Position X0 Y[l |z|o
Rotation X0 Yo 'zo
Scale X1 1¥Y[1 |21
¥ .. capsule (Mesh Filter) &
Mesh Wi Capsule o
v § ¥ capsule collider]
Edit Collider
Is Trigger J
Material 'None (Physic Material) (o]
Center X[0 'Y o 1zlo
Radius 0.5
Height |2
Direction | v-Axis &
v . ¥ Mesh Renderer]
» Lighting
» Materials
Dynamic Occluded 4
. npcColour &,
[S Shader | Standard .

[Add Component

Our NPC will go from side to side and if he collides with the player, the player will be sent back to

the start scene.

So, the first thing we need to do, is to create a script in which the NPC can move.

[Add Componont Add Component
NPCMove
Q. NPCMove| > p New Script
Name
Search

[NPCMove |
Language | C Sharp ¢

Move it into the scripts folder.

Add the following code
[Create and Add]

System.Collections;
System.Collections.Generic;
g UnityEngine;

lass NPCMove : MonoBehaviour {

ic Transform ObjectToMove;
c Vector3 rightPosition = new Vector3(23.ef, 1.ef, 0.0f);
ic Vector3 leftPosition = new Vector3(-23.ef, 1.ef, 0.0f);

npcSpeed = 50.0f;
1 mOVQLeft = L ;"\,(g;
| mOVeRight = fal se;

if (moveLeft)
{

MoveLeftNPC();

MoveRightNPC();

d MoveLeftNPC()

ObjectToMove.position = Vector3.Lerp(leftPosition, ObjectToMove.position, Time.deltaTime * npcSpeed);
if(ObjectToMove.position == leftPosition)
i

moveLeft = false;

moveRight = true;

}

id MoveRightNPC()

ObjectToMove.position = \ r3.Lerp(rightPosition, ObjectToMove.position, Time.deltaTime * npcSpeed);

if (ObjectToMove.positio rightPosition)
{
L

moveRight = f 5
moveLeft =

Once done, save and then go back to unity.

In the inspector, assign the NPC object to the Object To Move section of the script and test. You
might need to change the speed value.

- ———

v | ¥ NPC Move (Script) i %,
Script NPCMove o
Object To Move LNPC (Transform) (o]
Right Position X 23 Y|1 Z 0
Left Position X -23 Y|1 Z 0
Npc Speed 50

You should have the capsule moving from side to side.
Next, apply the collider to the NPC.

Steps are:

- Empty GameObject

- Apply Sphere collider

- Ensure is trigger is checked

- Link Bouncelevel Script

- Ensure the correct Scene Index is being applied.

Run the program, you should be forced back to the main stage if you hit the npc, on either side of
the board. You can modify the code, to make the npc move up and down the board as desired, but
in this case, just to make it a little more challenging, we’ll add some cube walls.

Before walls

After Walls

Play with the speed, the size of the colliders and so forth, this simple layout can stop the user from
reaching the final bounce.

Which of course, you could have as taking the player to a new scene which congratulates them on
getting through the levels.

