
Immersive Environments Tutorial

Unity

Goals:

- Collisions

- Triggered Events

- Changing Scenes

- Simple NPCs

Load up unity

Build Object: Collisions in Unity
Aim: Build various elements and test differing collision types.

Door Open
Build the following scene

The main camera is lined up like this:

The sphere has been called player and has the following attributes

Add a Rigidbody to the Player. Component Physics  Rigidody

The cube has been shaped like a door, and has the following attributes

The floor plane has the following material applied to it

Now that we have the basic layout, we will add the code to move the player around.

Create a new script called playerController and apply it to the player.

Place it in the scripts folder and then open it up in visual studio and apply the following code

And the following information

Save and test in Unity.

To ensure that the player sphere is visible when heading towards the cube, we’ll change the colour

of the cube.

The colour selected was this:

Now that we have the ability to see the sphere when it approaches the

door, we need to implement a collision area and an effect that occurs

when we get there, in this case, we will just move the door.

Now, let’s examine the inspector on the cube.

Turn back on the box collider.

So, the collider is what allows our objects to interact with each other.

The plan is to add an addition collider around the door object (Now is a good time to rename cube

to door) and have it trigger an event.

Rename cube to Door.

Right click on the hierarchy and add an empty game object.

The transform is as expected, nothing to

out of the ordinary, Cube mesh filter is

fine, but notice how it automatically has a

box collider on it that is active, if you

make the box collider in active, i.e.

remove the tick, and play. You will see the

player able to move straight through the

door object.

Do this and test.

In the hierarchy drag the TriggerDoor on the Door object, in this way creating a parent/Child link.

Now, when looking at the scene, the sphere collider is too small to be of use, as we want it to

trigger before the player hits the door, as such, scale it up.

In the inspector, we need to change the sphere collider’s attribute, so it works as a trigger and not a

collider. Otherwise our player won’t be able to pass through the door area. So, on the sphere

collider, check the is trigger box.

From here, we add a spher e collider onto this object, rename

the object from GameObject to TriggerDoor.

Now that we have prepared, let’s add a script to the TriggerDoor object.

Move the created script into the script file, then open it up it visual studio and add the following

code.

Save this and then go back to unity.

Ensure that the script is attached to the TriggerDoor Object

When looking at the script, notice how the Transform door code, aligns with None, this is awaiting a

link to the actual object, drag the door object into it or use the target to locate the object.

Run the program and you should see the door lifting up to allow the player sphere to travel under

it.

During testing the speed of 5 didn’t open the door

smoothly, when I dropped the Open Speed to 1, the

door opening was much smoother.

Now that we have the animation, let’s add some audio to the scene. Grab the audio file from L@G,

or if you have a freesound.org account, you can get the same sound from here:

https://freesound.org/people/mredig/sounds/120557/

To start with add an audio folder and then import the audio into the system

Right click in the audio folder and import new Asset

https://freesound.org/people/mredig/sounds/120557/

The audio folder will now look like:

On the TriggerDoor object, drag the audio file, it should look like this

Now, if you run the game, you will hear the noise the start with, this is because the play on awake is

ticked. So, when the game loads, it runs the audio file.

To stop this behaviour, untick play on awake.

Now, we have to add some code to the TriggeredDoor scrip to enable the audio to activate once we

open the door.

To do this we need to access the audio source and make it occur in the correct position, that position

being once we start the movement of the door. Modify the code to the following:

The reason we have both Play() and Stop(), is so that we can have more control over the sound, also

depending on the audio clip, you may need to trim it to make it occur at the speed you want.

Once coded, save and test.

Using a trigger to change scenes

Using the same scene that we have already created, save the scene as level0,

This will default to the assets folder; Move into the Scenes folder.

Then create a new scene as below and save as level1.

The floor material was applied to the player, the door material was applied to the plane, and a

simple red was applied to a new cube.

Attach the script, playerController to the player to ensure that we can move the sphere.

Save and test, if the rotation is off for the camera and

the controls seem inverted, it’s ok, this is just for

testing purposes.

Save this scene and go back to level0.

On level0, create a new cube. And position it like so.

The goal is to assign a collider, just like with the door, except instead of moving the object we will

jump between scenes.

To start with add both scenes to the build settings.

Now, let’s create a new Empty Game object as we did before, name it TriggerBounce and place it on

the cube, then and add a sphere collider to the object. Rename the cube to SceneBounce.

Drag the TriggerBounce onto SceneBounce to make it a child.

Ensure you have ticked Is Trigger on TriggerBounce

Ensure the sphere collider encapsulates the cube.

Add the following code.

On the SceneBounce add a new script called BounceLevel

Once you have done this, move the sc r ipt into the script folder and

then open it up in Visual Studio.

Back in Unity, make a change to the inspector to ensure that we are sending the correct correct

scene index to change to.

Save and Test, you should be able to walk the player into the cube and bounce to the next scene.

Repeat the process on level1 for the other cube.

Steps are:

- Empty GameObject

- Apply Sphere collider

- Ensure is trigger is checked

- Link BounceLevel Script

- Ensure the correct Scene Index is being applied.

In the scene

In the Inspector

In the hierarchy

If it doesn’t work, ensure that the sphere is tagged as Player.

Adding simple NPCs
Using the same project, create a new scene and save it as level 2, then add it to the build settings

and change the bounce level from 0 to 2 in the level1 scene. This way we can move from level 0-

>1>2

On level2 do the following:

Add a plane, scale it up 5 and use the same door material on it.

Create sphere, assign it a new green Material.

Apply a rigid body and movement script to the player and ensure the sphere is tagged as player.

Position the camera above and behind the p layer so we can see what is

going to occur.

Next create a cube, call it bounce and apply an empty game object to it, apply the scripts to make it

so if the player runs into it, it will bounce them to level0. Exactly what we have already done so far.

You have the following scene

Next, we add a NPC, as we are not bringing in fully fleshed out characters for this, create a capsule,

name it NPC and apply a new colour to it.

Our NPC will go from side to side and if he collides with the player, the player will be sent back to

the start scene.

So, the first thing we need to do, is to create a script in which the NPC can move.

Move it into the scripts folder.

Add the following code

Once done, save and then go back to unity.

In the inspector, assign the NPC object to the Object To Move section of the script and test. You

might need to change the speed value.

You should have the capsule moving from side to side.

Next, apply the collider to the NPC.

Steps are:

- Empty GameObject

- Apply Sphere collider

- Ensure is trigger is checked

- Link BounceLevel Script

- Ensure the correct Scene Index is being applied.

Run the program, you should be forced back to the main stage if you hit the npc, on either side of

the board. You can modify the code, to make the npc move up and down the board as desired, but

in this case, just to make it a little more challenging, we’ll add some cube walls.

Before walls

After Walls

Play with the speed, the size of the colliders and so forth, this simple layout can stop the user from

reaching the final bounce.

Which of course, you could have as taking the player to a new scene which congratulates them on

getting through the levels.

